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a b s t r a c t 

The notion of developing statistical methods in machine learning which are robust to adversarial per- 

turbations in the underlying data has been the subject of increasing interest in recent years. A com- 

mon feature of this work is that the adversarial robustification often corresponds exactly to regularization 

methods which appear as a loss function plus a penalty. In this paper we deepen and extend the un- 

derstanding of the connection between robustification and regularization (as achieved by penalization) in 

regression problems. Specifically, 

(a) In the context of linear regression, we characterize precisely under which conditions on the model of 

uncertainty used and on the loss function penalties robustification and regularization are equivalent. 

(b) We extend the characterization of robustification and regularization to matrix regression problems 

(matrix completion and Principal Component Analysis). 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The development of predictive methods that perform well in 

the face of uncertainty is at the core of modern machine learn- 

ing and statistical practice. Indeed, the notion of regularization —

loosely speaking, a means of controlling the ability of a statisti- 

cal model to generalize to new settings by trading off with the 

model’s complexity— is at the very heart of such work ( Hastie, 

Tibshirani, & Friedman, 2009 ). Corresponding regularized statistical 

methods, such as the Lasso for linear regression ( Tibshirani, 1996 ) 

and nuclear-norm-based approaches to matrix completion ( Candès 

& Recht, 2012; Recht, Fazel, & Parrilo, 2010 ), are now ubiquitous 

and have seen widespread success in practice. 

In parallel to the development of such regularization methods, 

it has been shown in the field of robust optimization that under 

certain conditions these regularized problems result from the need 

to immunize the statistical problem against adversarial perturba- 

tions in the data ( Ben-Tal, Ghaoui, & Nemirovski, 2009; Carama- 

nis, Mannor, & Xu, 2011; Ghaoui & Lebret, 1997; Xu, Caramanis, & 

Mannor, 2010 ). Such a robustification offers a different perspective 
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on regularization methods by identifying which adversarial pertur- 

bations the model is protected against. Conversely, this can help 

to inform statistical modeling decisions by identifying potential 

choices of regularizers. Further, this connection between regular- 

ization and robustification offers the potential to use sophisticated 

data-driven methods in robust optimization ( Bertsimas, Gupta, & 

Kallus, 2013; Tulabandhula & Rudin, 2014 ) to design regularizers 

in a principled fashion. 

With the continuing growth of the adversarial viewpoint in ma- 

chine learning (e.g. the advent of new deep learning methodologies 

such as generative adversarial networks ( Goodfellow et al., 2014a; 

Goodfellow, Shlens, & Szegedy, 2014b; Shaham, Yamada, & Negah- 

ban, 2015 )), it is becoming increasingly important to better under- 

stand the connection between robustification and regularization. 

Our goal in this paper is to shed new light on this relationship 

by focusing in particular on linear and matrix regression problems. 

Specifically, our contributions include: 

1. In the context of linear regression we demonstrate that in 

general such a robustification procedure is not equivalent to 

regularization (via penalization). We characterize precisely 

under which conditions on the model of uncertainty used 

and on the loss function penalties one has that robustifica- 

tion is equivalent to regularization. 

2. We break new ground by considering problems in the ma- 

trix setting, such as matrix completion and Principal Com- 

ponent Analysis (PCA). We show that the nuclear norm, a 
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Table 1 

Matrix norms on � ∈ R m ×n . 

Name Notation Definition Description 

p -Frobenius F p 

( ∑ 

i j 

| �i j | p 
) 1 /p 

Entrywise � p norm 

p -spectral 

(Schatten) 

σ p ‖ μ( �) ‖ p � p norm on the singular values 

Induced ( h , g ) max 
β

g( �β) 

h ( β) 
Induced by norms g , h 

popular penalty function used throughout this setting, arises 

directly through robustification. As with the case of vector 

regression, we characterize under which conditions on the 

model of uncertainty there is equivalence of robustification 

and regularization in the matrix setting. 

The structure of the paper is as follows. In Section 2 , we re- 

view background on norms and consider robustification and regu- 

larization in the context of linear regression, focusing both on their 

equivalence and non-equivalence. In Section 3 , we turn our atten- 

tion to regression with underlying matrix variables, considering in 

depth both matrix completion and PCA. In Section 4 , we include 

some concluding remarks. 

2. A robust perspective of linear regression 

2.1. Norms and their duals 

In this section, we introduce the necessary background on 

norms which we will use to address the equivalence of robustifi- 

cation and regularization in the context of linear regression. Given 

a vector space V ⊆ R 

n we say that ‖ · ‖ : V → R is a norm if for all 

v , w ∈ V and α ∈ R 

1. If ‖ v ‖ = 0 , then v = 0 , 

2. ‖ αv ‖ = | α|‖ v ‖ (absolute homogeneity), and 

3. ‖ v + w ‖ ≤ ‖ v ‖ + ‖ w ‖ (triangle inequality). 

If ‖·‖ satisfies conditions 2 and 3, but not 1, we call it a semi- 

norm . For a norm ‖·‖ on R 

n we define its dual, denoted ‖·‖ ∗ , to 

be 

‖ β‖ ∗ := max 
x ∈ R n 

x 

′ β
‖ x ‖ 

, 

where x ′ denotes the transpose of x (and therefore x ′ β is the usual 

inner product). For example, the � p norms ‖ β‖ p := ( �i | β i | 
p ) 1/ p for 

p ∈ [1, ∞ ) and ‖ β‖ ∞ 

:= max i | β i | satisfy a well-known duality re- 

lation: � p ∗ is dual to � p , where p ∗ ∈ [1, ∞ ] with 1 /p + 1 /p ∗ = 1 . We 

call p ∗ the conjugate of p . More generally for matrix norms 1 ‖·‖ on 

R 

m ×n the dual is defined analogously: 

‖ �‖ ∗ := max 
A ∈ R m ×n 

〈 A , �〉 
‖ A ‖ 

, 

where � ∈ R 

m ×n and 〈·, ·〉 denotes the trace inner product: 

〈 A , �〉 = Tr (A 

′ �) , where A 

′ denotes the transpose of A . We note 

that the dual of the dual norm is the original norm ( Boyd & Van- 

denberghe, 2004 ). 

Three widely used choices for matrix norms (see Horn & John- 

son, 2013 ) are Frobenius, spectral, and induced norms. The defini- 

tions for these norms are given below for � ∈ R 

m ×n and summa- 

rized in Table 1 for convenient reference. 

1 We treat a matrix norm as any norm on R m ×n which satisfies the three con- 

ditions of a usual vector norm, although some authors reserve the term “matrix 

norm” for a norm on R m ×n which also satisfies a submultiplicativity condition (see 

Horn and Johnson, 2013 , pg. 341). 

1. The p -Frobenius norm, denoted ‖ · ‖ F p , is the entrywise � p 
norm on the entries of �: 

‖ �‖ F p := 

( ∑ 

i j 

| �i j | p 
) 1 /p 

. 

Analogous to before, F p ∗ is dual to F p , where 1 /p + 1 /p ∗ = 1 . 

2. The p -spectral (Schatten) norm, denoted ‖ · ‖ σp , is the � p 

norm on the singular values of the matrix �: 

‖ �‖ σp 
:= ‖ μ( �) ‖ p , 

where μ( �) denotes the vector containing the singular val- 

ues of �. Again, σp ∗ is dual to σ p . 

3. Finally we consider the class of induced norms. If g : R 

m → 

R and h : R 

n → R are norms, then we define the induced 

norm ‖·‖ ( h , g ) as 

‖ �‖ (h,g) := max 
β∈ R n 

g( �β) 

h ( β) 
. 

An important special case occurs when g = � p and h = � q . 

When such norms are used, ( q , p ) is used as shorthand to 

denote ( � q , � p ). Induced norms are sometimes referred to as 

operator norms. We reserve the term operator norm for the 

induced norm (� 2 , � 2 ) = (2 , 2) = σ∞ 

, which measures the 

largest singular value. 

2.2. Uncertain regression 

We now turn our attention to uncertain linear regression prob- 

lems and regularization. The starting point for our discussion is the 

standard problem 

min 

β∈ R n 
g(y − X β) , 

where y ∈ R 

m and X ∈ R 

m ×n are data and g is some convex func- 

tion, typically a norm. For example, g = � 2 is least squares, while 

g = � 1 is known as least absolute deviation (LAD). In favor of mod- 

els which mitigate the effects of overfitting these are often re- 

placed by the regularization problem 

min 

β
g(y − X β) + h ( β) , 

where h : R 

n → R is some penalty function, typically taken to be 

convex. This approach often aims to address overfitting by penal- 

izing the complexity of the model, measured as h ( β). (For a more 

formal treatment using Hilbert space theory, (see Bauschke & Com- 

bettes, 2011; Bousquet, Boucheron, & Lugosi, 2004 ). For example, 

taking g = � 2 
2 

and h = � 2 
2 
, we recover the so-called regularized least 

squares (RLS), also known as ridge regression ( Hastie et al., 2009 ). 

The choice of g = � 2 2 and h = � 1 leads to Lasso, or least absolute 

shrinkage and selection operator, introduced in Tibshirani (1996) . 

Lasso is often employed in scenarios where the solution β is de- 

sired to be sparse, i.e., β has very few nonzero entries. Broadly 

speaking, regularization can take much more general forms; for 

our purposes, we restrict our attention to regularization that ap- 

pears in the penalized form above. 

In contrast to this approach, one may alternatively wish to re- 

examine the nominal regression problem min β g(y − X β) and in- 

stead attempt to solve this taking into account adversarial noise in 

the data matrix X . As in Ghaoui and Lebret (1997) , Lewis (2002) , 

Lewis and Pang (2009) , Ben-Tal et al. (2009) , Xu et al. (2010) , this 

approach may take the form 

min 

β
max 
�∈U 

g(y − (X + �) β) , (1) 

where the set U ⊆ R 

m ×n characterizes the user’s belief about 

uncertainty on the data matrix X . This set U is known in the 
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