
European Journal of Operational Research 270 (2018) 625–635

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Decision Support

Calculation of the performance region of an easy-to-optimize

alternative for Generalized Processor Sharing

Jasper Vanlerberghe

∗, Joris Walraevens , Tom Maertens , Herwig Bruneel

Department of Telecommunications and Information Processing, Ghent University, Sint-Pietersnieuwstraat 41, Ghent B-90 0 0, Belgium

a r t i c l e i n f o

Article history:

Received 26 April 2017

Accepted 10 April 2018

Available online 18 April 2018

Keywords:

Queueing

Hierarchical Generalized Processor Sharing

Feasible region

Optimization

a b s t r a c t

Service differentiation is a basic requirement in every modern queueing system with multiple classes

of customers. In this paper, we look at Hierarchical Generalized Processor Sharing (H-GPS), which is a

discrete-time hierarchically-structured implementation of the well-known idealized Generalized Proces-

sor Sharing (GPS) scheduling discipline. We prove that, for three classes, H-GPS can be configured to

obtain any performance possible by other scheduling mechanisms, such as priority queueing or GPS. The

hierarchical nature of a H-GPS system, however, has the major advantage that optimization is easier and

more intuitive. To this end, we also present an algorithm to calculate the configuration parameters for

H-GPS given a certain performance objective.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In communication/computer systems, it is common to have sev-

eral classes of traffic/jobs and for the administrator to desire some

service differentiation between said classes. These kinds of sys-

tems can be studied from a discrete-time queueing theoretic point

of view, which we do in this paper. Specifically, we consider a

discrete-time queueing system with three classes of customers and

a single server. These customers are a general term for what can be

arriving jobs or traffic packets (depending on the system of inter-

est) that require a certain service from the system. Each customer

requires a certain number of slots of service from the server (pos-

sibly stochastic and class-dependent), i.e. brings a discrete num-

ber of units of work in the system. The server serves one unit of

work per slot on a pre-emptive basis (it can switch to workunits

of a customer of another class before finishing the work from the

previous customer). Backlog of a specific class is stored in a class-

specific queue which is served on a FIFO basis. In this paper, we

focus on units of work left in the system (unfinished work), not

individual jobs/customers. Consequently, without loss of generality

and for ease of communication and brevity, we assume for the re-

mainder of this paper each customer only requires one single slot

of service. In this case, units of work and customers coincide.

∗ Corresponding author.

E-mail addresses: jasper.vanlerberghe@ugent.be (J. Vanlerberghe), Joris.

Walraevens@ugent.be (J. Walraevens), Tom.Maertens@ugent.be (T. Maertens),

Herwig.Bruneel@ugent.be (H. Bruneel).

For service differentiation numerous different scheduling poli-

cies exist, each with their own benefits and drawbacks. In this pa-

per, we study a hierarchical version of the well-known Generalized

Processor Sharing, called H-GPS. We first prove that H-GPS does

not limit the achievable performance region of the queueing sys-

tem. Secondly, we show that H-GPS is easy to optimize and present

an algorithm to obtain the correct configuration of the scheduler

for a desired performance setting. Before introducing H-GPS and

its inner workings, we evaluate other work-conserving schedul-

ing policies to establish a frame of reference. Work-conserving

scheduling policies have the property that the server never idles

when there is unfinished work in the system. Consequently, the

amount of unfinished work in the system is independent from the

chosen scheduling policy.

As a first policy, we consider strict priority. This is a policy

whereby the classes are ordered in a hierarchical way (Atencia,

2017; Kim & Chae, 2010; Laevens & Bruneel, 1998; Öner-Közen &

Minner, 2017; Rahimi & Pournaghshband, 2016; Walraevens, Fiems,

& Bruneel, 2011). The server checks the queues in their hierar-

chical order at each time slot, serving the first non-empty queue.

This way, the administrator ensures the performance of the class

with top priority is not influenced by the other classes. One of

the drawbacks, however, is potential starvation of lower priority

classes. This happens when high load of higher level classes and

their priority causes lower class customers to not get served for

an extremely long time. Strict priority also has the disadvantage of

not being flexible. The only way to tune performance is to reorder

priorities.

https://doi.org/10.1016/j.ejor.2018.04.018

0377-2217/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ejor.2018.04.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2018.04.018&domain=pdf
mailto:jasper.vanlerberghe@ugent.be
mailto:Joris.Walraevens@ugent.be
mailto:Tom.Maertens@ugent.be
mailto:Herwig.Bruneel@ugent.be
https://doi.org/10.1016/j.ejor.2018.04.018

626 J. Vanlerberghe et al. / European Journal of Operational Research 270 (2018) 625–635

If we want to evaluate a policy, we can look at a certain per-

formance metric, for instance the mean unfinished work of each

of the classes (assuming the system is stable and such means

exist). Then, the performance of the system at hand is charac-

terised by a vector w̄ = [̄w 1 , w̄ 2 , w̄ 3] of the mean unfinished work

for each of the classes. For strict priority, given a certain arrival

pattern of customers, it is clear that only 3! = 6 different per-

formance vectors can be achieved, corresponding to 6 possible

priority orderings. One can intuitively see that, if we only con-

sider work-conserving policies, the performance vector of every

policy will always be included in the convex polytope with the

6 performance vectors of strict priority as vertices. This is also

clarified in for instance (Bertsimas, Paschalidis, & Tsitsiklis, 1994;

Dacre, Glazebrook, & Niño Mora, 1999; Gupta, Hemachandra, &

Venkateswaran, 2014; Hassin, Puerto, & Fernández, 2009; Pavlin,

2017; Shanthikumar & Yao, 1992). Furthermore, Federgruen and

Groenevelt (1988) have shown that every performance vector in

this polytope can be achieved by a certain policy. In their paper,

they construct a policy whereby in each busy cycle a different pri-

ority ordering is used. By selecting the different orderings with ap-

propriate probabilities in the subsequent busy cycles, the policy

achieves the requested performance vector in the limit (averaged

over all busy cycles). In practice, this policy is not very valuable as

the performance for customers of a certain class strongly depends

on the busy cycle of their arrival, which is an undesired property

for practitioners; this policy lacks consistency of performance in

time.

Another policy option is a discrete-time version of the idealized

Generalized Processor Sharing (GPS) (Anselmi & Verloop, 2011; De-

bicki & Mandjes, 2007; Maglaras & Van Mieghem, 2005; Parekh

& Gallager, 1993; Parekh & Gallagher, 1994). This discrete-time

version is strongly related to PGPS (Packet-by-packet GPS) as de-

scribed in Parekh and Gallager (1993) . At the beginning of each slot

the server chooses which queue to serve next. Queue 1 is served

with probability β1 , queue 2 with probability β2 and queue 3 with

probability 1 − β1 − β2 . When one or two queues are empty their

probability share is redistributed proportionally to the other non-

empty queues. GPS resolves the problem of starvation. Moreover,

it is also flexible: choosing the weights β1 and β2 appropriately,

any performance vector in the aforementioned polytope can be

achieved. The border of the polytope (and the vertices that cor-

respond to priority scheduling) is reached in the limit where one

of the probabilities is 1 (high priority) and both others 0. In this

limit case however, it is necessary to further specify the bandwith

shares between the classes with 0 probability, as it is otherwise

unclear which queue to serve in the event that the high priority

queue is empty. The disadvantages of GPS lie in the difficult analy-

sis of its performance and the subsequent optimization of the pa-

rameters. Obtaining these β1 and β2 that lead to a desired perfor-

mance vector w̄

∗ inside the polytope (so we know it is achievable

with GPS), is far from straightforward. The fact that a small per-

turbation in one of the β i (i = 1 , 2) probabilities has an influence

on each of the w̄ j (j = 1 , 2 , 3) , makes for instance hierarchical op-

timization of the β i ’s cumbersome.

To mitigate these analysis and optimization challenges of

GPS, we investigate a hierarchical version of the aforementioned

discrete-time GPS system in this paper. In the next section, we

describe this H-GPS model and aim of this paper in full de-

tail. In Section 3 , we study the performance region of H-GPS

for three classes. We prove that with H-GPS the whole poly-

tope spanned by (the vertices of) priority scheduling is achiev-

able. Subsequently in Section 4 , we describe an algorithm to find

the combination of input parameters to obtain a given perfor-

mance vector w̄

∗. In Section 5 , we consider the implications of

an extension to more than three classes. Lastly, we conclude in

Section 6 .

Fig. 1. Discrete-time Hierarchical Generalized Processor Sharing.

2. Model description

The hierarchical version of discrete-time GPS, that is the sub-

ject of this paper, is related to other practical implementations

of the idealized H-GPS scheduling discipline, as for instance de-

scribed in Floyd and Jacobson (1995) , Bennett and Zhang (1997) ,

Kalmanek, Kanakia, and Keshav (1990) , and Chen and Liu (2013) .

In this discrete-time H-GPS version, we introduce two hierarchical

levels. In each slot, assuming all queues are backlogged, the server

first decides on the first hierarchical level to either serve queue 1

with probability (w.p.) β1 , or delegate service to hierarchical level

2 with probability 1 − β1 . If service is delegated to level 2, queue 2

is served with probability β2 and queue 3 is served with probabil-

ity 1 − β2 . If queue 1 is empty, service is always delegated to level

2. Conversely, if queues 2 and 3 are empty queue 1 is served. If

service is delegated to level 2 and one of the queues on that level

is empty, the other queue is served. Obviously no service happens

when the system is empty. The policy is illustrated in Fig. 1 . It is

clear from this definition that β2 has no influence on the decision

whether or not to serve queue 1. The latter decision is taken on the

first hierarchical level where β2 plays no role. As a consequence,

β2 has no influence on w̄ 1 , and thus β1 and β2 can be optimized

hierarchically. However, it is unclear from the definition whether

the performance region of H-GPS matches the polytope mentioned

earlier. Therefore, we first study the performance region of H-GPS

in the next section.

For completeness of the description of the dynamics of the

H-GPS system, we specify the balance equations below. In these

equations, w k denotes the unfinished work at the beginning of slot

k and a k the arrivals in slot k . Analogously, w j,k denotes the unfin-

ished work of class j at the beginning of slot k and a j , k the arrivals

of class j in slot k .

• w k = 0

w k +1 = a k (1)

• w i,k > 0 ; w j,k = 0 with j = { 1 , 2 , 3 } \ { i }
w i,k +1 = w i,k − 1 + a i,k

w j,k +1 = a j,k

• w 1 ,k = 0 ; w 2 ,k , w 3 ,k > 0

w k +1 = w k − [0 , 1 , 0] + a k w.p. β2

w k +1 = w k − [0 , 0 , 1] + a k w.p. 1 − β2

• w 2 ,k = 0 ; w 1 ,k , w 3 ,k > 0

w k +1 = w k − [1 , 0 , 0] + a k w.p. β1

w k +1 = w k − [0 , 0 , 1] + a k w.p. 1 − β1

• w 3 ,k = 0 ; w 1 ,k , w 2 ,k > 0

w k +1 = w k − [1 , 0 , 0] + a k w.p. β1

w k +1 = w k − [0 , 1 , 0] + a k w.p. 1 − β1

Download English Version:

https://daneshyari.com/en/article/6894589

Download Persian Version:

https://daneshyari.com/article/6894589

Daneshyari.com

https://daneshyari.com/en/article/6894589
https://daneshyari.com/article/6894589
https://daneshyari.com

