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a b s t r a c t 

Given an input solution that may not be Pareto optimal, we present a new inverse optimization method- 

ology for multi-objective convex optimization that determines a weight vector producing a weakly Pareto 

optimal solution that preserves the decision maker’s trade-off intention encoded in the input solution. 

We introduce a notion of trade-off preservation, which we use as a measure of similarity for approximat- 

ing the input solution, and show its connection with minimizing an optimality gap. We propose a linear 

approximation to the inverse model and a successive linear programming algorithm that balance between 

trade-off preservation and computational efficiency, and show that our model encompasses many of the 

existing inverse optimization models from the literature. We demonstrate the proposed method using 

clinical data from prostate cancer radiation therapy. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Given a feasible solution to an (forward) optimization prob- 

lem, the inverse optimization problem aims to determine param- 

eter values – typically objective function parameters – that make 

the given solution optimal. Classical inverse approaches leverage 

duality to ensure optimality of a given solution (e.g., Ahuja & Orlin, 

2001; Iyengar & Kang, 2005; Lamperski & Schaefer, 2015; Schaefer, 

2009; Zhang & Xu, 2010 ). However, these inverse models return a 

trivial solution (e.g., a coefficient vector of all zeros for inverse lin- 

ear optimization) if the given feasible solution is not a candidate 

to be optimal for the forward problem. 

In general, there is no guarantee that a given solution is exactly 

optimal for the assumed forward problem. An original solution 

might have been adjusted post-optimization for implementability 

reasons, or the assumed forward model is itself a simplification 

of a complex system where an observed solution is near-optimal, 

which the decision maker wishes to use in the future. When in- 

verse problems involve such uncertainty around the model and 

data, it is important to determine an objective function that cap- 

tures the intention of the decision maker who “implemented”

the given solution so that it replicates the implemented solu- 

tion as closely as possible in future decision making. Recent 

studies have generalized the classical inverse models to over- 

come the issue of given solutions not being exactly optimal. For 

example, Troutt, Sohn, and Brandyberry (2005) , Troutt, Pang, and 
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Hou (2006) , Keshavarz, Wang, and Boyd (2011) , Chow and Recker 

(2012) , Chan, Craig, Lee, and Sharpe (2014) , Bertsimas, Gupta, and 

Paschalidis (2015) , Aswani, Shen, and Siddiq (2018) , and Chan, Lee, 

and Terekhov (2018) developed approximate inverse optimization 

models that impute model parameters that make the given solu- 

tions minimally suboptimal. In this paper, we bring together the 

ideas of Keshavarz et al. (2011) and Chan et al. (2014) and develop 

a new inverse optimization model for multi-objective convex opti- 

mization where the given solutions may not be Pareto optimal. 

In multi-objective optimization, decision making is typically 

based in the objective space, i.e., the space where the vector of ob- 

jective values resides. Deciding between different solutions on the 

Pareto frontier in this space involves examining the trade-off in ob- 

jective values. With a weighted objective function, as is common in 

convex multi-objective problems, solutions are generated by solv- 

ing the forward problem with different nonzero weight vectors, 

which explicitly quantify the trade-offs in the objectives deemed 

acceptable by the decision maker. Conversely, without access to 

the weights, and only observing a solution on the Pareto frontier, 

it is possible using classical inverse optimization methods to re- 

verse engineer the weight vector that generated the solution and 

therefore determine the decision maker’s intention with respect to 

trade-offs. If the observed solution is not on the Pareto frontier, on 

the other hand, approximate inverse optimization methods may be 

applied, which return a weight vector that generates a solution on 

the Pareto frontier. 

Whether such a weight vector truly reflects the trade-offs in- 

tended in the given solution can be characterized by the relation- 

ship between the given solution and the newly generated (weakly) 
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Pareto optimal solution. In multiobjective optimization, trade-offs 

are represented by how much a decision maker is willing to com- 

promise on some objective values to achieve improvements in 

other objectives ( Eskelinen & Miettinen, 2012 ). Formally, given two 

solutions, a trade-off between any given two objectives is mea- 

sured by the ratio of changes in the objective values ( Miettinen, 

1999 ). In other words, when moving from one solution to another, 

if the ratio of the changes in the objective values equals 1 across 

all the objectives, the solutions are considered to share (hence pre- 

serve ) the same trade-off preference ( Chankong & Haimes, 1983; 

Eskelinen & Miettinen, 2012; van Haveren et al., 2017 ). By incor- 

porating this definition of trade-off into the inverse optimization 

context, the inferred weight vector then should generate a solu- 

tion on the Pareto frontier that adjusts the objective values of the 

given solution by the same amount across all the objectives. In this 

paper, we generalize the above definition of trade-off preservation 

by considering a ratio of weighted differences in the objective val- 

ues of two solutions, and develop an inverse optimization model 

that infers a weight vector that preserves the trade-off encoded 

in a given solution. We show that under some special cases of 

the trade-off preservation definition, finding a trade-off-preserving 

weight vector leads to minimizing the optimality gap associated 

with the given solution. Our assumption is that although a given 

solution may not be Pareto optimal, it is a desirable solution that 

reflects the decision maker’s implicit preferences, from which our 

inverse model seeks to infer the weights. 

Our work generalizes the approach of Chan et al. (2014) by 

considering convex multi-objective optimization problems. Also, 

our notion of trade-off preservation is general enough to repre- 

sent various ways to characterize trade-offs across multiple ob- 

jectives. For example, our model can be specialized to the dual- 

ity gap minimization approaches in Chan et al. (2014) and the 

single-objective approximate inverse convex model in Keshavarz 

et al. (2011) . We show that existing inverse optimization mod- 

els designed for single-objective optimization which could poten- 

tially be used for multi-objective optimization, e.g., Keshavarz et al. 

(2011) , may not take into consideration trade-offs across multiple 

objectives encoded in the given solution. As in Keshavarz et al. 

(2011) and Chan et al. (2014) , we assume that a set of objectives is 

pre-specified. 

We provide geometric interpretation of inverse optimization 

concerning Pareto optimality by relating the inversion process to 

projection of a given solution to the Pareto surface, which in turn 

is related to the reference point method in the multiobjective opti- 

mization literature ( Miettinen, 1999; Ogryczak & Kozlowski, 2011; 

Wierzbicki, 1986 ). Our results elucidate the connection between 

the two areas by bringing the concept of trade-off preservation 

into the framework of inverse optimization. A related paper pro- 

posed a method to quantify the relative importance of multiple 

objectives given a prioritized order of the objectives and a Pareto 

optimal solution ( Breedveld, Storchi, & Heijmen, 2009 ). Our work 

can be considered an extension since it applies to non-Pareto opti- 

mal solutions. Our contributions are summarized below. 

(1) We generalize previous inverse optimization approaches and 

develop a new inverse convex multi-objective optimization 

model that accommodates any input solution and determines 

a nonzero weight vector that preserves the trade-off encoded in 

the input solution . We introduce a notion of trade-off preserva- 

tion that is generally applicable to multi-objective optimization 

and prove that some special cases of trade-off preservation are 

equivalent to the concept of duality gap minimization that has 

been widely used in the inverse optimization literature. We elu- 

cidate the new relationship between the existing inverse opti- 

mization and multiobjective optimization techniques. 

(2) We propose an efficient linear approximation of the proposed 

inverse problem as well as a successive linear programming al- 

gorithm that bridges the exact and approximate methods. Based 

on the linear approximation, we show that our proposed in- 

verse optimization method is general and encompasses many 

of the inverse models from the literature. 

(3) We demonstrate the application of our inverse optimization 

model to a clinical treatment planning problem using real 

prostate cancer radiation therapy data. Assuming given treat- 

ments are clinically desirable and a set of objective functions 

is provided, we show that weights that preserve the trade-off

encoded in the given objective values produce treatments that 

are similar to the original treatments clinically. We show that 

inverse models that are not trade-off-preserving may lead to 

treatments that deviate substantially from the original treat- 

ments and violate clinical acceptability criteria. 

2. Background 

We first define a canonical multi-objective convex optimiza- 

tion problem as the forward problem. Then, we briefly re- 

view the inverse optimization models from Iyengar and Kang 

(2005) , Keshavarz et al. (2011) , and Chan et al. (2014) . 

2.1. Forward optimization problem 

Let f k : R 

n → R , k = 1 , . . . , K and g l : R 

n → R , l = 1 , . . . , L be 

convex functions. Let x ∈ R 

n , A ∈ R 

m ×n , and b ∈ R 

m . We define the 

forward optimization problem (FOP) as 

FOP ( α) : minimize 
x 

K ∑ 

k =1 

αk f k (x ) (1a) 

subject to g l (x ) ≤ 0 , l = 1 , . . . , L, (1b) 

Ax = b , (1c) 

where αk is the weight for the k th objective function. Let X be 

the feasible region of (1). We assume α ∈ R 

K + \{ 0 } , f k (x ) > 0 , k = 

1 , . . . , K for x ∈ X , and A has full rank. We also assume that Slater’s 

condition holds ( Boyd & Vandenberghe, 2004 ). We define �( α) to 

be the set of optimal solutions to FOP( α) and � := 

⋃ 

α∈ R K + \{ 0 } �( α) . 

A solution x ∈ X is weakly Pareto optimal if there is no other y ∈ X 

such that f k ( y ) < f k ( x ), for all k = 1 , . . . , K; a solution x ∈ X is Pareto 

optimal if there is no other y ∈ X satisfying f k ( y ) ≤ f k ( x ) for all 

k = 1 , . . . , K with at least one k such that f k ( y ) < f k ( x ). It is known 

that for a convex multi-objective optimization problem, the set �

consists of all weakly Pareto optimal solutions. For any S ⊆X , we 

write f (S) = { ( f 1 (x ) , . . . , f K (x )) | x ∈ S} . We denote f ( X ) as the fea- 

sible region in the objective space and the set f ( �) as the Pareto 

surface. 

2.2. Inverse conic optimization 

We begin by illustrating the approach of Iyengar and Kang 

(2005) using our forward problem (1). Given K pre-specified objec- 

tives and a solution 

ˆ x ∈ X , assumed to be a regular point ( Bazaraa, 

Sherali, & Shetty, 2006 ), a weight vector that makes ˆ x optimal can 

be found by solving the following problem: 

minimize 
α, σ, π

0 (2a) 

subject to 

K ∑ 

k =1 

αk ∇ x f k ( ̂ x ) + 

L ∑ 

l=1 

σl ∇ x g l ( ̂ x ) − A 

′ π = 0 , (2b) 
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