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a b s t r a c t 

The Maximum Balanced Biclique Problem (MBBP) is a prominent model with numerous applications. Yet, 

the problem is NP-hard and thus computationally challenging. We propose novel ideas for designing ef- 

fective exact algorithms for MBBP in bipartite graphs. First, an Upper Bound Propagation (UBP) procedure 

to pre-compute an upper bound involving each vertex is introduced. Then we extend a simple Branch- 

and-Bound (B&B) algorithm by integrating the pre-computed upper bounds. Based on UBP, we also study 

a new integer linear programming model of MBBP which is more compact than an existing formulation 

(Dawande, Keskinocak, Swaminathan, & Tayur, 2001). We introduce new valid inequalities induced from 

the upper bounds to tighten these mathematical formulations for MBBP. Experiments with random bipar- 

tite graphs demonstrate the efficiency of the extended B&B algorithm and the valid inequalities generated 

on demand. Further tests with 30 real-life instances show that, for at least three very large graphs, the 

new approaches improve the computational time with four orders of magnitude compared to the original 

B&B. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Given a bipartite graph G = (U, V, E) with two disjoint vertex 

sets U , V and an edge set E ⊆U × V , a biclique A ∪ B (or ( A , B )) is the 

union of two subsets of vertices A ⊆U , B ⊆V such that ∀ i ∈ A , ∀ j ∈ B , 

{ i , j } ∈ E . In other words, the subgraph induced by vertex set A ∪ B is 

a complete bipartite graph. If | A | = | B | , then biclique ( A , B ) is a bal- 

anced biclique. The Maximum Balanced Biclique Problem (MBBP) 

is to find a balanced biclique ( A , B ) of maximum cardinality. As 

| A | = | B | holds for a balanced biclique ( A , B ), MBBP is then to find 

the maximum half-size balanced biclique. MBBP is a special case 

of the conventional maximum clique problem ( Wu & Hao, 2015 ). 

MBBP is a prominent model with a large range of applications, 

such as nanoelectronic system design ( Al-Yamani, Ramsundar, & 

Pradhan, 2007; Tahoori, 2006 ), biclustering of gene expression data 

in computational biology ( Cheng & Church, 20 0 0 ) and PLA-folding 

in the VLSI theory ( Ravi & Lloyd, 1988 ). In all these applications, 

the given graphs are bipartite graphs. In terms of computational 

complexity, the decision version of MBBP is NP-Complete ( Alon, 

Duke, Lefmann, Rodl, & Yuster, 1994; Garey & Johnson, 1979 ), 

∗ Corresponding author at: LERIA, Université d’Angers, 2 bd Lavoisier, Angers 

49045, France. 

E-mail address: jin-kao.hao@univ-angers.fr (J.-K. Hao). 

though the maximum biclique problem in bipartite graphs (with- 

out requiring | A | = | B | ) is polynomially solvable by the maximum 

matching algorithm ( Cheng & Church, 20 0 0 ). 

Considerable effort has been devoted to the pursuit of effec- 

tive algorithms for MBBP in bipartite graphs, both theoretically 

and practically. Heuristic algorithms represent the most popular 

approach for MBBP, though they do not guarantee the optimality 

of the attained solutions. The majority of existing heuristic algo- 

rithms solve the equivalent maximum balanced independent set (a 

vertex set such that no two vertices are adjacent) problem in the 

complement bipartite graph, rather than directly seeking the max- 

imum balanced biclique from the given graph. For example, several 

greedy heuristic algorithms were proposed, which apply vertex- 

deletion rules on the complement bipartite graph in the period 

from 2006 to 2014 ( Al-Yamani et al., 20 07; Tahoori, 20 06; Yuan & 

Li, 2011; 2014 ), while an evolutionary algorithm combining struc- 

ture mutation and repair-assisted restart was introduced in 2015 

( Yuan, Li, Chen, & Yao, 2015 ). 

On the other hand, according to our literature review, there 

are only two studies on exact algorithms. In Tahoori (2006) , a re- 

cursive exact algorithm for searching a maximum balanced inde- 

pendent set with a given half-size in the complement graph was 

proposed. However, the computational time of this algorithm be- 

comes prohibitive when the number of vertices of the given graph 
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exceeds (32,32). In McCreesh and Prosser (2014) , a Branch-and- 

Bound (B&B) algorithm for MBBP (named BBClq) for general graphs 

(including non-bipartite graphs) was studied. The algorithm incor- 

porates a clique cover technique for upper bound estimation (an 

equivalent technique of using graph coloring to estimate the upper 

bound for the maximum clique problem) and employs lex symme- 

try breaking techniques for general graphs. As far as we know, this 

algorithm is currently the best performing exact algorithm, even 

though the bounding technique and symmetry breaking techniques 

are only effective for non-bipartite graphs. 

In addition to specifically designed exact algorithms, the gen- 

eral Integer Linear Programming (ILP) constitutes an interest- 

ing alternative for solving hard combinatorial problems such as 

MBBP. Commercial mixed ILP solvers, like IBM CPLEX, can even 

solve some hard instances which cannot be handled by other ap- 

proaches. Meanwhile, the success of a ILP solver highly depends 

on the tightness of the mathematical formulation of the problem. 

For MBBP, an ILP formulation has been proposed in Dawande, Ke- 

skinocak, Swaminathan, and Tayur (2001) , which is based on the 

complement graph. Another mathematical formulation that defines 

the constraints on the original graph was presented in Yuan et al. 

(2015) . However, this formulation was not applicable for ILP solvers 

as it contains non-linear constraints. 

In this work, we introduce new ideas for developing effective 

exact algorithms for MBBP, which help to solve very large MBBP 

instances from applications like social networks. Our main contri- 

butions can be summarized as follows. 

First, we elaborate an Upper Bound Propagation (UBP) proce- 

dure inspired from Soto, Rossi, and Sevaux (2011) , which produces 

an upper bound of the maximum balanced biclique involving each 

vertex in the bipartite graph. UBP propagates the initial upper 

bound involving each vertex and achieves an even tighter upper 

bound for each vertex. UBP is independent from the search pro- 

cedure and is performed before the start of the search algorithm. 

An extended exact algorithm, denoted by ExtBBClq, is proposed by 

taking advantage of UBP to improve BBClq, the branch-and-bound 

algorithm introduced in McCreesh and Prosser (2014) . 

Second, we introduce a new and more compact formulation 

that requires a largely reduced number of constraints compared 

to the previous formulation presented in Dawande et al. (2001) . 

In the previous model of Dawande et al. (2001) , the number of 

constraints equals the number of edges in the complement bipar- 

tite graph, making it inapplicable to solve large real-life sparse 

graphs. The proposed model reduces the number of constraints 

to the number of vertices in the graph, which allows for dealing 

with very large instances. We also introduce new inequalities to 

tighten both previous and new formulations. Our computational 

results suggest that the new formulation and tightened inequali- 

ties improve the performance of the ILP solver CPLEX. 

The remainder of the paper is organized as follows. 

Section 2 introduces the notations that will be used throughout 

the paper and Section 3 reviews the BBClq algorithm introduced in 

McCreesh and Prosser (2014) . In Section 4 , we present our Upper 

Bound Propagation procedure for upper bound estimation and 

explain how to use it to improve BBClq. In Section 5 , we discuss 

the existing ILP formulation for MBBP and present our new ILP 

model. We also study how the upper bounds can lead to new valid 

inequalities to tighten the ILP formulations. Computational results 

and experimental analyses are presented in Section 6 , followed by 

conclusions and future working directions. 

2. Notations 

Given a bipartie graph G = (U, V, E) (| U | ≤ | V | if not specifically 

stated), let ( A , B ) ⊆( U , V ) be a balanced biclique of G (i.e., | A | = | B | ). 
The half-size of the balanced biclique ( A , B ) is the cardinality of | A | 

Fig. 1. A bipartite graph G = (U, V, E) , U = { 1 , 2 , 3 , 4 , 5 } , V = { 6 , 7 , 8 , 9 , 10 } . 

(or | B |). For example, in Fig. 1 , ({2, 3}, {7, 8}) is a balanced biclique 

of half-size of 2. For all S ⊆U ∪ V , G [ S ] denotes the subgraph of G 

induced by S . Given a vertex i in G , the set of vertices adjacent 

to i is denoted by N(i ) = { j : { i, j} ∈ E} and deg G (i ) = | N(i ) | is the 

degree of vertex i . The upper bound involving vertex i , denoted by 

ub i , is an upper bound of the half-size of the maximum balanced 

biclique containing vertex i . For example, in Fig. 1 , a possible value 

for ub 1 could be 2, since deg G (1) = 2 . 

3. Review of the BBClq algorithm 

To our knowledge, the B&B algorithm BBClq presented in 

McCreesh and Prosser (2014) is the current best-performing exact 

algorithm for MBBP for general graphs. The algorithm is mainly 

inspired from the well-known algorithms ( Segundo, Rodríguez- 

Losada, & Jiménez, 2011; Tomita & Kameda, 2007 ) for the max- 

imum clique problem. Algorithm 1 shows the general search 

Algorithm 1: BBClq( G , A , B , C A , C B ), the trimmed B&B algo- 

rithm for MBBP from McCreesh and Prosser (2014) . 

Input : Graph instance G = (U, V, E) , A , B – current sets that 

form a biclique, C A , C B – the sets of eligible vertices 

that can be added to A and B , respectively 

Output : A maximum balanced biclique of G . 

1 if | A | > lb then 

2 lb ← | A | 
3 Record current best biclique in (A 

∗, B ∗) 

4 while C A 	 = ∅ do 

5 if | A | + | C A | ≤ lb then 

6 return 

7 i ← branch _ v ertex (C A ) 

8 C A ← C A \ { i } 
9 if upper _ bound(A ∪ { i } ) > lb then 

10 A 

′ ← A ∪ { i } 
11 C ′ 

B 
← C B ∩ N(i ) 

12 BBClq( G, B , A 

′ , C ′ B , C A ) 

13 return make_balance (A 

∗, B ∗) 

scheme of BBClq. 

BBClq recursively builds two sets A and B such that ( A , B ) forms 

a biclique. It maintains a candidate set C A ( C B ) that includes ver- 

tices which are eligible to join A ( B ) while ensuring that ( A , B ) is a 

biclique (i.e., C A = 

⋂ 

i ∈ B N(i ) , C B = 

⋂ 

i ∈ A N(i ) ). Initially, the algorithm 

sets lb , the global lower bound on the maximum biclique half-size 

to 0 and starts the search by calling BBClq( G , ∅ , ∅ , U , V ). 

At each recursive call to BBClq, a vertex i (called branch ver- 

tex) is moved from C A (lines 7 and 8). The algorithm then con- 

siders the branches (possibilities) of i ∈ A (lines 9–12) and i 	∈ A in 

the next while loop. The bounding procedure (line 9) prunes the 

branch of i ∈ A if the upper bound after estimation in this context 

is not larger than the global lower bound. The upper bound es- 

timating method, which is classically a key point concerning the 
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