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a b s t r a c t 

In many financial contracts (and in particular when trading OTC derivatives), participants are exposed 

to counterparty risk. The latter is typically rewarded by adjusting the “risk-free price” of derivatives; an 

adjustment known as credit value adjustment (CVA). A key driver of CVA is the dependency between ex- 

posure and counterparty risk, known as wrong-way risk (WWR). In practice however, correctly addressing 

WWR is very challenging and calls for heavy numerical techniques. This might explain why WWR is not 

explicitly handled in the Basel III regulatory framework in spite of its acknowledged importance. In this 

paper we propose a sound and tractable method to deal efficiently with WWR. Our approach consists 

in embedding the WWR effect in the drift of the exposure dynamics. Even though this calls for infinite 

changes of measures, we end up with an appealing compromise between tractability and mathematical 

rigor, preserving the level of accuracy typically required for CVA figures. The good performances of the 

method are discussed in a stochastic-intensity default setup based on extensive comparisons of expected 

positive exposure (EPE) profiles and CVA figures produced (i) by a full bivariate Monte Carlo implemen- 

tation of the initial model with (ii) our drift-adjustment technique. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The 2008 financial crisis stressed the importance of taking into 

account counterparty risk in the valuation of OTC transactions, 

even when the latter are secured via (clearly imperfect) collateral 

agreements. Counterparty default risk calls for a price adjustment 

when valuing OTC derivatives, called the credit value adjustment 

(CVA). Of course, CVA can also apply to other types of bilateral 

contracts, for example to longevity swaps, see e.g. Biffis, Blake, 

Pitotti, and Sun (2016) . This adjustment depends on the traded 

portfolio � and the counterparty C . It represents the market value 

of the expected losses on the portfolio in case C defaults prior to 

the portfolio maturity T . Alternatively, this can be seen as today’s 

price of replacing the counterparty in the financial transactions 

constituting the portfolio, see for example Brigo and Mercurio 

(2006) , Brigo, Morini, and Pallavicini (2013b) , Gregory (2010) , Stein 

and Pong (2011) , Vrins and Gregory (2011) . Interestingly, CVA 

can also be regarded as a fixed-point problem, as recently shown 

in Kim and Leung (2016) . The mathematical expression of this 
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adjustment can be derived in a rather easy way within a risk- 

neutral pricing framework. Yet, the computation of the resulting 

conditional expectation poses some problems when addressing 

wrong-way risk (WWR), namely accounting for the possible statis- 

tical dependence between exposure and counterparty credit risk. 

Several techniques have been proposed to tackle this point. At this 

time, there are two main approaches to handle WWR: the dy- 

namic approach (either structural or reduced-form) and the static 

(resampling) approach. The first one provides an arbitrage-free 

setup and is popular among academic researchers. Unfortunately, 

it has the major disadvantage of being computationally intensive 

and cumbersome, which makes its practical use difficult. On the 

other hand, the second approach does not have a rigorous justifi- 

cation, but has the nice feature of providing the industry with a 

tractable alternative to evaluating WWR in a rather simple way. In 

spite of its significance, WWR is currently not explicitly accounted 

for in the Basel III regulatory framework; the lack of a reasonable 

alternative to handle CVA is perhaps one of the reasons. 

In this paper, we revisit the CVA problem under WWR and pro- 

pose an appealing way to handle it in a sound but yet tractable 

way. We show how the CVA with WWR can be written as the CVA 

without WWR provided that the exposure dynamics are modified 

accordingly. This will be achieved via a set of equivalent measures 
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called wrong-way measures (WWM). The practical benefit of this 

approach will be to make WWR more tractable in a way that may 

partly or even totally avoid simulations. Indeed, accurate WWR cal- 

culations via simulation can be very time consuming and this may 

discourage practitioners from computing WWR in practice. This 

makes semi-analytical approaches like the one introduced here- 

after of practical interest. 

The paper is organized as follows. Section 2 sets the scene and 

recalls the fundamental CVA pricing formulae with and without 

WWR. Next, in Section 3 , we briefly review the most popular tech- 

niques to address WWR. We then focus on the case where de- 

fault risk is managed in a stochastic intensity (Cox) framework. 

Section 4 introduces a set of new numéraires that will generate 

equivalent martingale measures. Under these WWM measures, the 

CVA problem with WWR takes a form similar to the CVA problem 

without WWR, provided that we change the measure under which 

one computes the expectation of the positive exposure at a future 

point in time. Section 5 is dedicated to the computation of the ex- 

posure dynamics under the WWM. Particular attention is paid to 

the stochastic drift adjustment under affine intensity models. In or- 

der to reduce the complexity of the pricing problem, the (stochas- 

tic) drift adjustment is approximated by a deterministic function; 

the WWR effect is thus fully embedded in the exposure’s drift 

via a deterministic adjustment. Finally, Section 6 proposes an ex- 

tensive analysis of the performances of the proposed approach in 

comparison with the standard stochastic intensity method featur- 

ing Euler-type discretizations of the bivariate stochastic differential 

equation (SDE) governing the joint dynamics of default intensity 

(credit spread risk) and portfolio value (market risk). 

2. Counterparty risk adjustment 

Define the short (risk-free) rate process r = (r t ) t≥0 and the cor- 

responding bank account numéraire B t := e 
∫ t 

0 r s ds so that the defla- 

tor B := ( B t ) t ≥ 0 has dynamics: 

dB t = r t B t dt. 

We work in a complete arbitrage-free market, so that there exists 

a risk-neutral probability measure Q associated to this numéraire, 

under which all B -discounted non-dividend paying tradeable assets 

are martingales. In this setup, CVA can be computed as the Q - ex- 

pectation of the non-recovered losses resulting from counterparty’s 

default, discounted according to B . More explicitly, let R be the re- 

covery rate of C and V t be the closeout price of � at time t 1 . The 

general formula for the CVA on portfolio � traded with counter- 

party C whose default time is modelled via the random variable 

τ > 0, is given by (see for example Brigo & Masetti, 2005 ): 

CVA = E 

B 

[
(1 − R )1I { τ≤T } 

V 

+ 
τ

B τ

]

= (1 − R ) E 

B 

[
E 

B 

[
H T 

V 

+ 
τ

B τ

∣∣∣σ (H u , 0 ≤ u ≤ t) 

]]
, 

where E 

B denotes the expectation operator under Q , H := ( H t ) t ≥ 0 is 

the default indicator process defined as H t := 1I { τ≤t} , and the sec- 

ond equality results from the assumption that R is a constant and 

from the tower property. The outer expectation can be written as 

an integral with respect to the risk-neutral survival probability 

G (t) := Q [ τ > t] = E 

B 
[
1I { τ>t} 

]
. 

1 Here, we assume that this corresponds to the risk-free price of the portfolio 

which is the most common assumption, named “risk free closeout”, even though 

other choices can be made, such as replacement closeout, see for example Brigo 

et al. (2013b) , Durand and Rutkowski (2013) . 

The survival probability is a deterministic positive and decreas- 

ing function satisfying G (0) = 1 and typically expressed as G (t) = 

e −
∫ t 

0 h (s ) ds where h is a non-negative function called hazard rate . In 

practice, this curve is bootstrapped from market quotes of securi- 

ties driven by the creditworthiness of C , i.e. defaultable bonds or 

credit default swaps (CDS). If τ admits a density, the expression 

for CVA then becomes 

CVA = −(1 − R ) 

∫ T 

0 

E 

B 

[
V 

+ 
t 

B t 

∣∣∣τ = t 

]
dG (t) . (1) 

In the case where the discounted portfolio price process V / B is in- 

dependent of τ , one can drop the condition in the above expecta- 

tion to obtain the so-called standard (or independent ) CVA formula: 

CVA 

⊥ := −(1 − R ) 

∫ T 

0 

E 

B 

[
V 

+ 
t 

B t 

]
dG (t) , (2) 

where the superscript ⊥ in general denotes that the related quan- 

tity is computed under the independence assumption. The de- 

terministic function being integrated with respect to the survival 

probability is called the ( discounted ) expected positive exposure , also 

known under the acronym EPE: 

EPE 

⊥ (t) := E 

B 

[
V 

+ 
t 

B t 

]
. 

Under this independence assumption, CVA takes the form of the 

weighted (continuous) sum of European call option prices with 

strike 0 where the underlying of the option is the residual value of 

the portfolio �. The reduced-form approach relies on a change of 

filtrations whose definitions call for clarifications on the model. We 

shall consider some explicit examples later in Section 5 but already 

provide some details. We deal with a market composed of “default- 

free assets” and “defaultable assets”. The term “default” implicitly 

refers to the credit event of party C. We define three filtrations. 

The first filtration F = (F t ) 0 ≤t≤T is defined as the default-free 

information. It provides enough (and potentially more) informa- 

tion to determine the prices of the default-free assets. Yet F only 

provides partial information about the market: we assume F t is 

not rich enough to determine whether C defaulted or not prior to 

t . We then consider a second filtration H = (H t ) 0 ≤t≤T generated 

by the default indicator H . It conveys enough information to de- 

termine the potential occurrence of counterparty C’s credit event: 

H t = σ (H u , 0 ≤ u ≤ t) . Notice that F and H need not be indepen- 

dent: it is only required that H t ∈ H t but H t / ∈ F t . Finally, we de- 

fine a third filtration G = (G t ) 0 ≤t≤T where G t := H t ∨ F t is repre- 

senting the total information set available at time t . In our context, 

this can be viewed as all relevant asset prices and/or risk factors. 

Therefore, H is adapted to G but not to F . All stochastic processes 

considered here are thus defined on a complete filtered probability 

space (�, G, G = (G t ) 0 ≤t≤T , Q ) where Q is the unique risk-neutral 

measure and G := G T with T the investment horizon (which can 

be considered here as the portfolio maturity). In this setup, we as- 

sume that our portfolio � is only composed of “default-free assets”

which in turn means that V and V / B are F -adapted processes. For 

instance, � can be composed of a risk-free asset, stocks and op- 

tions but that are not explicitly sensitive to τ , thereby excluding 

defaultable bonds and CDS written on C . 

A key quantity for tackling default is the Azéma (Q , F ) - 

supermartingale (see Dellacherie & Meyer, 1975 ), defined as the 

projection of the survival indicator H onto the subfiltration F : 

S t := E 

B 
[
1I { τ>t} |F t 

]
= Q [ τ > t|F t ] . 

The financial interpretation of S t is a survival probability at t given 

only observation of the default-free filtration F up to t . Formally, 

the stochastic process S is linked to the survival probability G by 
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