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a b s t r a c t 

We analyze the price-sensitive newsvendor problem with non-negative linear additive demand. We show 

that the problem always has an optimal solution and identify random demand distributions for which a 

unique optimal solution can be computed by showing that, for those distributions, the expected profit is 

a quasiconcave function of the retail price. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The price-setting newsvendor problem has been thoroughly an- 

alyzed as shown in the survey of Petruzzi and Dada (1999) . For 

the linear additive demand case considered in this paper, Whitin 

(1955) and Mills (1959) proposed the early formulations of this 

problem and characterized its optimal solutions. Ernst (1970) and 

Young (1978) proved the unimodality of the objective function 

under certain assumptions on the statistical distribution which 

were generalized by Petruzzi and Dada (1999) . Kocabiyikoglu and 

Popescu (2011) , studied the newsvendor problem with a more gen- 

eral demand function and derived general conditions for unimodal- 

ity of the objective function. Xu, Chen, and Xu (2010) analyzed the 

effect of demand uncertainty in a price-setting newsvendor model 

and Zhao and Atkins (2008) studied an equilibrium extension of 

the newsvendor problem with multiple competitive newsvendors. 

Krishnan (2010) pointed out that a nonnegativity constraint 

should be imposed on the total demand in the linear additive de- 

mand formulation in Petruzzi and Dada (1999) to eliminate the 

possibility of negative actual demand. Otherwise, the computed 

optimal price p may be suboptimal and the expected profit is un- 

derestimated because the actual demand is “choked off” at high 

optimal p values. Krishnan (2010) observes that, by assuming non- 

negativite linear additive demand, the expected profit function 

may no longer be quasiconcave in p and the problem becomes less 

tractable. Farahat and Perakis (2010) also recognized the need to 
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incorporate the nonnegativity constraint on the total demand in 

their model of multiproduct price competition. 

In this paper, we consider the price-setting newsvendor prob- 

lem with nonnegative linear additive demand. We show that the 

problem still possesses an optimal solution (possibly nonunique) 

and investigate when the expected profit function is quasiconcave 

in p so that a unique optimal solution can be computed. We show 

that this is possible when the expected actual sales can be ex- 

pressed in closed form and identify a number of random demand 

distributions for which this is true. We demonstrate our approach 

through a numerical example. 

The rest of the paper is organized as follows. The price-setting 

newsvendor problem with nonnegative linear additive demand is 

analyzed in Section 2 . Section 3 summarizes the conclusions of this 

research. 

2. The price-setting newsvendor problem with nonnegative 

linear additive demand 

Let D = d(p) + x denote the total linear additive demand, where 

d(p) = a − bp, a > 0, b > 0, is the price-dependent deterministic de- 

mand, p is the retail price and x is the random demand. We de- 

note by q the order quantity and by c the unit cost. This linear 

deterministic demand function is in effect when consumers de- 

cide whether to purchase the product by maximizing the utility 

function U(q ) = 

a 
b 

q − 1 
2 b 

q 2 − pq subject to p ≤ a 
b 

because in that 

case q ∗ = a − bp ≥ 0 is the unique optimal solution of max q ≥ 0 U ( q ). 

On the other hand, the non-linear deterministic demand function 

d(p) = (a − bp) + related to the analysis in this paper is in ef- 

fect when the consumer utility function U(q ) = 

a 
b 

q − 1 
2 b 

q 2 − pq is 
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maximized with unbounded p ≥ 0. Observe that when p > 

a 
b 
, q ∗ = 

0 is the unique optimal solution of max q ≥ 0 U ( q ). 

In the case of a general additive demand function d ( p ), where 

d 
′ 
(p) < 0 for p ≥ 0 and d ( p ) < 0 for large enough p , the utility 

function U ( q ) generalizes to U(q ) = 

∫ q 
0 

d −1 (u ) du − pq subject to 

d ( p ) ≥ 0, where d −1 (u ) is the inverse demand function. The opti- 

mal solution of the max q ≥ 0 U ( q ) problem is q ∗ = d(p) ≥ 0 . The im- 

position of a nonnegativity constraint on the total demand leads to 

a significantly more difficult problem compared to the linear addi- 

tive case. For this reason, we focus on the linear demand function 

d(p) = a − bp in the sequel. 

The random demand x , has cdf F ( x ), F̄ (x ) = 1 − F (x ) , and pdf 

f ( x ) with support on [0, ∞ ) so that f (x ) = 0 for x < 0 and f ( x ) > 0 

for x ≥ 0. We assume that f ( x ) is continuously differentiable for 

x > 0 and that the mean μ is finite. The failure rate is defined as 

h (x ) = 

f (x ) 

F̄ (x ) 
. F is IFR (increasing failure rate) if h 

′ 
(x ) ≥ 0 . 

In the absence of a nonnegativity constraint on the total de- 

mand the newsvendor solves the expected profit maximization 

problem 

max 
p,q 

�(p, q ) = pE[ min (q, a − bp + x )] − cq. (1) 

By solving problem (1) , it is possible that d(p ∗) = a − bp ∗ < 0 , 

where p ∗ is the optimal price. Since the random term x can be 

viewed as the market noise, the actual demand realization d(p ∗) + 

x may be negative for small noise x which implies that there is 

no demand with adverse market conditions. This is in contrast 

with most literature which assumes that the newsvendor has non- 

negative demand even with the worst market conditions. 

By imposing a nonnegativity constraint on the total demand, 

(1) becomes 

max 
p,q 

˜ �(p, q ) = pE[ min (q, (a − bp + x ) + )] − cq, (2) 

where z + = max { 0 , z} . Since x ≥ 0, ˜ �(p, q ) = �(p, q ) for p ≤ a 
b 
, 

q ≥ 0. However, ˜ �(p, q ) > �(p, q ) for p > 

a 
b 
, q ≥ 0, because, in that 

case, (a − bp + x ) + = 0 > a − bp + x when 0 ≤ x < bp − a . Note that 

since we only require the actual demand realization a − bp + x to 

be nonnegative, p > 

a 
b 

is allowed when the random demand x sat- 

isfies 0 ≤ x < bp − a . 

Let q = a − bp + z ≥ 0 , where z ≥ 0 is the stocking factor and 

define S(z) = E[ min (z, x )] as the expected actual sales given the 

quantity z . Then, (1) can be written as 

max 
p,z 

�(p, z) = p(a − bp) + pS(z) − c(a − bp) − cz. (3) 

2.1. The nonnegative deterministic demand case 

Consider the problem (2) restricted to the feasible set where 

d(p) = a − bp ≥ 0 so that p ≤ a 
b 

and 

˜ �(p, q ) = �(p, q ) . If we let 

q = a − bp + z ≥ 0 , this restricted version of problem (2) can be 

written as 

max 
p≤ a 

b 
,z 

˜ �(p, z) = p(a − bp) + pS(z) − c(a − bp) − cz. (4) 

Let z 0 be the unique solution of S(z 0 ) = a − bc and define H(z) = 

[ a + bc + S(z)] h (z) 

F̄ (z) 
. Proposition 1 , stated next, specifies when the 

optimal solution restricted to the feasible set where d(p) = a −
bp ≥ 0 lies in the interior of that feasible set (with p ∗ < 

a 
b 

) or on 

its boundary (with p ∗ = 

a 
b 

). 

Proposition 1. Assume that F is IFR and a > bc. Then, the problem 

max p≤ a 
b 
,z �(p, z) has a unique optimal solution ( p ∗, z ∗), where 

p ∗ = p(z ∗) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
2 b 

[ a + bc + S(z ∗)] ∈ (c, a 
b 
) , if H(z 0 ) > 1 , 

F̄ (z 0 ) < 

bc 
a 

, 

a 
b 
, if H(z 0 ) ≤ 1 or H(z 0 ) > 1 , F̄ (z 0 ) ≥ bc 

a 
, 

z ∗ = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

the unique solution of p(z) ̄F (z) − c 

= 0 (z ∗ < z 0 ) , if H(z 0 ) > 1 , F̄ (z 0 ) < 

bc 

a 
, 

F̄ −1 ( 
bc 

a 
) (z ∗ ≥ z 0 ) , if H(z 0 ) ≤ 1 or H(z 0 ) > 1 , F̄ (z 0 ) ≥ bc 

a 
, 

All proof are relegated to the Appendix . 

2.2. The nonpositive deterministic demand case 

Consider the problem (2) restricted to the feasible set where 

d(p) = a − bp ≤ 0 , that is p ≥ a 
b 

. Then, if we let q = a − bp + z ≥ 0 , 

which is equivalent to z ≥ bp − a, this restricted version of problem 

(2) can be written as 

max 
p≥ a 

b 
,z≥bp−a 

˜ �(p, z) = pE[ min (a − bp + z, (a − bp + x ) + )] 

−c(a − bp) − cz. (5) 

Since for p ≥ a 
b 
, min [ a − bp + z, (a − bp + x ) + ] = 0 for x ≤ bp − a 

and min [ a − bp + z, (a − bp + x ) + ] = a − bp + min (z, x ) for x ≥ bp −
a ; then, E{ min [ a − bp + z, (a − bp + x ) + ] } = S(z) − S(bp − a ) . Thus, 

(5) can be written as 

max 
p≥ a 

b 
,z≥bp−a 

˜ �(p, z) = −pS(bp − a ) + pS(z) − c(a − bp) − cz. (6) 

In view of ( 3 ), for p > 

a 
b 
, z ≥ bp − a, ˜ �(p, z) − �(p, z) = p[(bp −

a ) − S(bp − a )] > 0 . Let us replace the variable z in (6) by q = a −
bp + z ≥ 0 . Then, (6) can be written as 

max 
p≥ a 

b 
,q ≥0 

˜ �(p, q ) = pS(bp − a + q ) − pS(bp − a ) − cq. (7) 

The next proposition shows that the profit function 

˜ �(p, q ) in 

(7) is bounded and thus (7) always has an optimal (possibly 

nonunique) solution. 

Proposition 2. Assume that F is IFR and a > bc. Then, (7) always has 

an optimal solution. A unique optimal solution can be computed if we 

can show that (7) is quasiconcave in p. A critical step in that pro- 

cess is the ability to express S ( z ) in a closed form. A list of IFR distri- 

butions where this is possible includes the Gamma distribution with 

integer k ≥ 1 ( f (x ) = 

1 
(k −1)! 

x k −1 e −x ), the χ2 distribution with integer 
ν
2 ≥ 1 ( f (x ) = 

1 
2 ν/ 2 (ν/ 2 −1)! 

x ν/ 2 −1 e −x/ 2 ) and the Chi distribution with 

integer k ≥ 1 ( f (x ) = 

1 
2 k/ 2 −1 (k −1)! 

x k −1 e −x/ 2 ), all with support [0, ∞ ), 

as well as the uniform distribution U [0, b ] and the Power distribution 

with support [0, 1] ( f (x ) = kx k −1 ). In contrast, a closed form expres- 

sion for S ( x ) is not possible for the Normal distribution, the Logistic 

distribution and the Weibull distribution. 

In the next proposition, we demonstrate this approach for the 

gamma distribution with k = 2 . 

Proposition 3. Assume that a > bc. Then, for the Gamma distribu- 

tion with k = 2 , where f (x ) = xe −x , ˜ �(p, q ) is quasiconcave in p on 

[ a 
b 
, ∞ ) for any fixed q ≥ 0 . Moreover, the unique optimal solution of 

max p≥ a 
b 

˜ �(p, q ) , is given by 

p(q ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

p(q ) = 

1 
2 v 1 (q ) b 

[ v 1 (q ) a + v 2 (q ) 

+ 

√ 

4[ v 1 (q )] 2 + [(2 − a ) v 1 (q ) − v 2 (q )] 2 ] , if p (q ) ≥ a 

b 
, 

a 

b 
, if p (q ) < 

a 

b 
, 

where v 1 (q ) = 1 − e −q , v 2 (q ) = qe −q . Thus, (7) is equivalent to the 

single-variable problem max q ≥0 
˜ �(p(q ) , q ) which has an optimal 

solution. 

Proposition 3 does not yield a closed form optimal solution for 

(7) . By emulating the proof of Proposition 3 , we obtain the fol- 

lowing closed form solution to (7) for the exponential distribution 

exp (1) with a > bc . 
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