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a b s t r a c t 

We consider the problem of finding a shortest path in a directed graph with a quadratic objective func- 

tion (the QSPP). We show that the QSPP cannot be approximated unless P = NP . For the case of a convex 

objective function, an n -approximation algorithm is presented, where n is the number of nodes in the 

graph, and APX -hardness is shown. Furthermore, we prove that even if only adjacent arcs play a part 

in the quadratic objective function, the problem still cannot be approximated unless P = NP . In order to 

solve the problem we first propose a mixed integer programming formulation, and then devise an ef- 

ficient exact Branch-and-Bound algorithm for the general QSPP, where lower bounds are computed by 

considering a reformulation scheme that is solvable through a number of minimum cost flow problems. 

In our computational experiments we solve to optimality different classes of instances with up to 10 0 0 

nodes. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The Shortest Path Problem (SPP) of finding a path in a directed 

graph from an origin node s to a target node t with minimal arc 

length is a well-studied combinatorial optimization problem. Many 

classical algorithms such as Dijkstra’s labeling algorithm ( Dijkstra, 

1959 ) have been developed to solve the SPP efficiently. 

Several extensions of the basic SPP exist to model more com- 

plex settings. These include problems where the travel costs of an 

arc follow a distribution and the shortest path is constrained by 

parameters such as the variance of the cost of the path ( Sivakumar 

& Batta, 1994 ), and problems in which additional costs arise from 

pairs of arcs in a solution ( Amaldi, Galbiati, & Maffioli, 2011; 

Gourvès, Lyra, Martinhon, & Monnot, 2010 ). 

In this paper, we consider the shortest path problem with a 

quadratic objective function (the QSPP). Specifically, writing the 

linear objective function of the classical shortest path problem as 

c � x with a cost vector c , the objective function of the QSPP is 

x � Qx + c � x with a quadratic matrix Q . 
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1.1. Applications and related work 

One variant of the SPP studied in the literature that is directly 

related to QSPP is that of finding a variance-constrained shortest 

path ( Sivakumar & Batta, 1994 ) where the arc costs are not de- 

terministic but follow a distribution and the objective is to find a 

path with minimum expected costs subject to the constraint that 

the variance of the costs is less than a specific threshold. In par- 

ticular, a solution consists of a path that must have both a short 

expected length and a low risk of exploding costs in an unfortu- 

nate event. An application for this problem is the transportation 

of hazardous materials. Possible approaches to solve the Variance- 

Constrained Shortest Path problem involve a relaxation in which 

the quadratic variance constraint is incorporated into the objective 

function, thus yielding a QSPP problem. In this case, the quadratic 

part of the objective function is determined by the covariance ma- 

trix of the coefficient’s probability distributions, and hence convex. 

In a similar way, instead of bounding the variance, one may search 

for a solution that considers both the expected cost and the vari- 

ance of a path as optimization criteria. In Suvrajeet, Pillai, Joshi, 

and Rathi (2001) , the authors consider this as a multi-objective 

optimization problem. They solve this problem by combining the 
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Table 1 

Our complexity results for different variants of the Quadratic Shortest Path Problem. 

The entries marked with in asterisk ( ∗) hold true unless NP = P . 

GRAPH TYPE 

PROBLEM General Acyclic Series-parallel graph 

QSPP Not approximable ∗ Not approximable ∗ Not approximable ∗

convex QSPP APX -hard APX -hard APX -hard 

AQSPP Not approximable ∗ P P 

linear and quadratic objective functions into a single QSPP. Also 

related to variance-constrained shortest path problems are the so- 

called reliable shortest paths, see ( Chen et al., 2012 ). 

A different type of applications arises from research on network 

protocols. In Murakami and Kim (1997) , the authors study different 

restoration schemes for self-healing ATM networks. In particular, 

the authors examine line and end-to-end restoration schemes. In 

the former, link failures are addressed by routing traffic around the 

failed link, in the latter, traffic is rerouted by computing an alter- 

native path between source and target. Within their analysis, the 

authors point out the need to solve a QSPP to address rerouting in 

the latter scheme. Nevertheless, they do not provide details about 

the algorithm used to obtain a QSPP solution. 

All problems described above involve variants of the classical 

shortest path problem in which additional costs arise with the 

presence of pairs of arcs in the solution. Such a setting can be 

modeled by a quadratic objective function on binary variables as- 

sociated with each arc, and leads to the definition of a QSPP. 

To the best of our knowledge there is no specific method in the 

literature to solve the QSPP. The only algorithmic approach that 

has been applied to solve instances of the the QSPP is the one 

proposed in Buchheim and Traversi (2015) . They studied a generic 

framework for solving binary quadratic programming problems. In 

their computational experiments, they solve some special classes 

of quadratic 0 − 1 problems including the QSPP. 

1.2. Main contributions 

In this paper, we analyze the complexity of the general QSPP 

and several of its special cases. In particular, we show that the 

general QSPP cannot be approximated unless P = NP . This is done 

by reducing an instance of the Path with Forbidden Pairs Prob- 

lem (known to be NP -complete) to a corresponding instance of 

the QSPP. We also show that, even if we restrict the quadratic part 

of the cost function to pairs of arcs which are adjacent (AQSPP), 

the problem still cannot be approximated unless P = NP . This is 

done by a gap-producing reduction from an instance of 3SAT to 

an instance of the AQSPP. Moreover, for the convex QSPP where 

the quadratic form is positive semidefinite and, thus, the objective 

function is convex, we show that the problem is APX-hard and pro- 

vide an n -approximation algorithm, where n is number of nodes in 

the graph. Our complexity results are summarized in Table 1 . 

From the practical point of view, we present a mixed inte- 

ger programming formulation whose size is linear in terms of 

the number of variables in the original quadratic formulation. We 

also propose an exact Branch-and-Bound algorithm for the general 

QSPP, where lower bounds are computed by considering a refor- 

mulation scheme that is solvable through a number of minimum 

cost flow problems. In our computational experiments we solve to 

optimality different types of instances with up to 10 0 0 nodes and 

show that our results outperform a state-of-the-art solver. 

Parts of this paper have been published as conference proceed- 

ings ( Rostami, Malucelli, Frey, & Buchheim, 2015 ), where the au- 

thors show the NP -hardness of the general QSPP, analyze polyno- 

mially solvable special cases, and propose some bounding proce- 

dures for the general QSPP. 

2. Problem formulation 

Let a directed graph G = (V, A ) be given, with a source node 

s ∈ V , a target node t ∈ V , a cost function c : A → R 

+ , which maps 

every arc to a non-negative cost, and a cost function q : A × A → 

R 

+ that maps every pair of arcs to a non-negative cost. We de- 

note by δ−(i ) = { j ∈ V | ( j, i ) ∈ A } and δ+ (i ) = { j ∈ V | (i, j) ∈ A } 
the sets of predecessor and successor nodes for any given i ∈ V , by 

n the number of nodes, and by m the number of arcs. Using binary 

variables x ij indicating the presence of arc ( i , j ) ∈ A on the optimal 

path, the QSPP is represented as: 

QSPP: z ∗ = min 

∑ 

(i, j) , (k,l) ∈ A 
q i jkl x i j x kl + 

∑ 

(i, j) ∈ A 
c i j x i j 

s.t. x ∈ X st , x binary . (1) 

Here, the feasible region X st is the path polyhedron 

X st = 

{ 

0 ≤ x ≤ 1 : 
∑ 

j∈ δ+ (i ) 

x i j −
∑ 

j∈ δ−(i ) 

x ji = b(i ) ∀ i ∈ V 

} 

with b(i ) = 1 for i = s, b(i ) = −1 for i = t, and b(i ) = 0 for i ∈ V �{ s , 

t }. Note that, like in the case of classic shortest path problems, it is 

not necessary to include cycle-elimination constraints, as all costs 

are positive. 

Note that the objective function of the QSPP can be represented 

by a quadratic and a linear term f (x ) := x T Qx + c T x for an appro- 

priate matrix Q . We can assume without loss of generality that the 

matrix Q is symmetric and denote the special case where Q is pos- 

itive semi-definite, i.e., when f is convex, as the convex QSPP. 

Next we define some special cases of the QSPP where the 

quadratic part of the cost function has a local structure, meaning 

that each pair of variables appearing jointly in a quadratic term in 

the objective function corresponds to a pair of arcs lying close to 

each other. We define the Adjacent QSPP (AQSPP), where interac- 

tion costs of all non-adjacent pair of arcs are assumed to be zero. 

Therefore, only the quadratic terms of the form x ij x kl with j = k 

and i � = l or with j � = k and i = l have nonzero objective function co- 

efficients. 

As a variant of the AQSPP, we may count additional costs for ad- 

jacent arc pairs only if these arcs are traversed consecutively. This 

problem was investigated in Amaldi et al. (2011) , Rostami et al. 

(2015) , Gourvès et al. (2010) . To distinguish it from the AQSPP, we 

call it Consecutive QSPP (CQSPP) here. In fact, the AQSPP and the 

CQSPP are identical if the given graph is acylic. However, for gen- 

eral graphs they are not equivalent. In fact, while the AQSPP is not 

even approximable in general, as shown in this paper, the CQSPP 

turns out to be tractable for any graph. This even remains true 

when taking all arc pairs into account that appear with a fixed 

maximal distance on the path ( Rostami et al., 2015 ). 

3. Complexity results 

3.1. The general QSPP 

We start our complexity analysis with the observation that the 

QSPP can be seen as a generalization of the Path with Forbid- 

den Pairs Problem (PFPP). An instance of the PFPP consists of a 

graph G = (V, A ) , two nodes s , t ∈ V and a list of forbidden arc pairs 

L = { (a 1 , a 1 ) , . . . , (a k , a k ) } . The goal is to find a path from s to t 

that contains at most one arc of each arc pair in L . (The prob- 

lem may also be defined with a list of forbidden vertex pairs). It is 

known that this problem is NP -complete ( Gabow, Maheshwari, & 

Osterweil, 1976 ). Every PFPP can be transformed to an equivalent 

QSPP, which leads to the following theorem. 

Theorem 3.1. The QSPP cannot be approximated unless P = NP . 
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