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a b s t r a c t 

We consider a four-machine robotic cell producing identical parts and served by a single robot. We study 

the no-wait multi-cyclic scheduling problem. Using the forbidden-intervals method, we show that in such 

a cell the optimal schedule can be k -cyclic with minimum k ≥ 6. This fact refutes Agnetis’ conjecture (Ag- 

netis, 20 0 0) stating that the minimum k for the optimal k -cyclic m -machine schedules does not exceed 

m −1. In particular, we construct a counter-example to Agnetis’ conjecture. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction and previous work 

We consider the problem of no-wait scheduling of robotic 

cells that produce identical parts and which are served by a sin- 

gle robot. We are interested in maximizing the long-term aver- 

age throughput of parts. The schedule with the maximum aver- 

age throughput is called optimal . The problem of finding such an 

optimal schedule was studied, among others, by Agnetis (20 0 0), 

Brauner (2008), Brauner and Finke (1999, 2001 ), Crama and van 

de Klundert (1999), Dawande, Geismar, and Sethi (2005), Geismar, 

Dawande, and Sriskandarajah (2005), Sethi, Sriskandarajah, Sorger, 

Blazewicz, and Kubiak (1992) , and Che and Chu (2009) . 

Let us define a cyclic schedule as one where, within a fixed time 

interval, referred to as the cycle , the number of parts that enter the 

cell is equal to the number of parts leaving it. At the end of the 

cycle, the cell returns to its original state. This process is repeated 

an infinite number of times. The cyclic schedule is called k - cyclic 

if, in each cycle, exactly k parts enter and k parts leave the cell. 

A perennial open question in scheduling theory is whether or 

not an optimal cyclic schedule exists from among all possible infi- 

nite schedules. Tanaev (1964) and Blokh and Tanaev (1966) showed 

that if the input data is integer (or, more generally, rational) 

then an optimal cyclic schedule exists from among all possible, 

infinitely-long schedules. Dawande et al. (2005) independently ob- 

tained a similar result. However, despite their arguments, the ques- 

tion still remains open for real input data. 
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The proof of the existence of optimal cyclic schedules for inte- 

ger and rational data is essentially based on the notion of state, 

which is defined as a set of rational parameters describing the 

physical location of the robot; the parts; the status of the robot 

(i.e., unloaded, loaded); and each processed part, i.e. the time re- 

maining to unload the part from machine. Accordingly, the sched- 

ule can then be presented as a sequence of states and the transi- 

tions between them. Since the number of different states becomes 

finite, some states will appear infinitely many times in any infinite 

schedule. Consequently, a section of the schedule between the re- 

peated state occurrences can be duplicated infinitely many times 

without decreasing the production throughput. 

If the sequence of states is optimal, then any sequence seg- 

ment between two equal states has the same throughput rate. If 

we infinitely replicate such segment we obtain the k -cyclic sched- 

ule with the same optimal throughput rate as in the initial sched- 

ule. The estimated value of k depends on the input data values and 

is, in fact, a very large number. 

In recent years, numerous studies have focused on special cases 

of the above question, for different small k . A k -cyclic schedule 

is called optimal if it has maximum throughput or, equivalently, 

a minimum average cycle time from among all cyclic schedules. 

Considering an m -machine cell and following Brauner (2008) , let 

us introduce the cycle function K ( m ), which, for a given number of 

machines m, is the smallest value of K such that the set of all k - 

cyclic schedules up to size K contains an optimal cyclic schedule 

for all the problem instances. (That is, for a given m, the set of all 

k -cyclic schedules up to size K contains an optimal cyclic schedule 

for all the problem instances; the set of all ( K- 1)-cyclic schedules 

does not have that property). 
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Agnetis (20 0 0) proved that, for the no-wait robotic cells, 

K (2) = 1, K (3) = 2 and conjectured that K ( m ) = m – 1, for m > 3. Let 

us consider the definition of K ( m ) in more details. Let the cell con- 

tain two machines. The notation K (2) = 1 means that in any two- 

machine cell, independently of what the input data of a problem 

instance is, there exists a one-cyclic optimal schedule for that in- 

stance. K (3) = 2 means that in any three-machine cell, indepen- 

dently of a problem instance (input data), there exists a certain 1- 

cyclic or 2-cyclic optimal cyclic schedule for that instance. That is, 

if one finds, for instance, some k -cyclic optimal schedule with k ≥
3, for any sample three-machine problem, then there always exists 

(and can be found) a certain one- or two-cyclic optimal schedule 

for this instance and, in addition, there exist three-machine prob- 

lem samples for which a 1-cyclic optimal schedule does not exist. 

In this paper, we continue this line of research and study multi- 

cyclic, no-wait schedules for m > 3. We present an example for 

the four-machine problem for which a six-cyclic schedule has an 

average cycle time less than any other 1-, 2-, 3-, 4- and 5-cyclic 

feasible schedule. We can therefore say that, in such a case, the 6- 

cyclic schedule strictly dominates all k -cyclic schedules with k ≤ 5. 

According to the above definition of the cycle function K ( m ), this 

proves that K (4) ≥ 6. 

As a by-product, the latter result refutes Agnetis’ conjecture. In- 

deed, for m = 4, the latter conjecture implies that K (4) should be 

equal to 3. However, in fact, we shall see that K (4) ≥ 6. In order to 

prove this fact, we apply the forbidden-intervals technique intro- 

duced by Aizenshat (1963) and further developed by Levner, Kats, 

and Levit (1997) , Che, Chu, and Levner (2003) and Che and Chu 

(2009) . Notice that the question remains open as to whether K (4) 

is strictly larger than 6; the example presented in this note does 

not provide an answer to this question. 

Instead of the guess that Agnetis makes, we conjecture that 

K (4) = 6 and, more generally, K ( m ) = ( m – 1)! 

2. Optimal cyclic schedules for robotic cells 

In this section we briefly describe a m -machine robotic cell pro- 

ducing identical parts and served by a single robot. Denote m pro- 

cessing machines in the technological sequence of operations by 

M 1 , M 2 ,…, M m 

. Let machines M 0 and M m + l denote the input and 

output station, respectively. The robot transports the parts between 

machines, no more than one part at time. Each machine can pro- 

cess only one part at time. This means that the operations on the 

machine do not overlap in time and the robot must remove the 

finished part from the machine before the next part will be loaded 

onto it. The no-wait constraint which is imposed requires that after 

a part is processed at a machine M i , this part must be immedi- 

ately transferred by the robot to the next machine M i + 1 . Denote 

the following parameters (which are the known constants): 

p i – the processing time on machine M i , i = 1,…, m ; 

d i – the time required for the robot to deliver a part from ma- 

chine M i to machine M i + 1 , i = 0, 1,…, m ; 

r ij – the time required for the empty robot to run from machine 

M i to machine M j ; r ii = 0, i = 1, …, m + 1, j = 0, 1,…, m . 

We assume that the robot’s moves satisfy the following triangle 

inequalities: 

R ik ≤ R i j + R jk (1) 

where R ij = d i + r i + l, j and i , j , k = 0, 1,…, m . 

Let part 0 be moved by the robot from machine M 0 into the 

processing system at time t 0 = 0. Denote by Z j the completion time 

of the parts’ j th operation on machine M j . In the no-wait case, all 

Z j are defined by the time t 0 and the processing/delivering times, 

as follows: 

Z 0 = t 0 = 0 , Z j = t 0 + 

j ∑ 

i =1 

( d i −1 + p i ) , j = l, ...., m. (2) 

Assume that identical parts 1, 2, … are introduced by the robot 

from machine M 0 into the process at times Y 1 , Y 2 , … respectively. 

Then the completion time of the j th operation of part q is Y q + Z j , 

( q = 0, 1, 2, …; j = 0, 1, 2, …, m ), where Y 0 = t 0 = 0. The sequence 

Y 1 , Y 2 , … fully determines the starting and completion times of 

processing parts on each machine and the sequence of all robot 

moves. We shall call the sequence S = ( Y 1 , Y 2 , …) a robotic sched- 

ule . Let T q + 1 = Y q + 1 – Y q ( q = 0, 1, 2, …) be the time between two 

consecutive robot moves transferring the parts from machine M 0 . 

Then, the schedule S can be also presented as a sequence of times 

T q , S = ( T 1 , T 2 , …). The schedule is k -cyclic if there exists a con- 

stant (called the cycle time) C = Y q + k – Y q for all q = 0, 1, 2, …. 

The k -cyclic schedule S k can be defined by k time values, S k = { T 1 , 

T 2 , …, T k } = ( T 1 , T 2 , …, T k , T 1 , T 2 , …, T k ,…) and its cycle time is C 

= �i = 1 k T i . Schedule’s average cycle time is the mean time required 

to produce a part, or equivalently, is the mean time between two 

consecutive robot moves with parts from machine M 0 . 

T a v r = 

Sup 
q →∞ 

( 

q ∑ 

i =1 

( T i /q ) = 

Sup 
q →∞ 

( Y q /q ) . (3) 

In the k -cyclic case, we have 

T k −cyclic a v r = C/k = 

k ∑ 

i =1 

T i /k. (3a) 

Our objective is to find an optimal schedule, that is, one dis- 

playing the minimum average cycle time. 

3. Method of forbidden intervals 

For the reader’s convenience, in this section we first briefly 

outline the so-called method of forbidden intervals , an algebraic 

approach to analyzing and solving scheduling problems. Consider 

the infinite production process. Denote the sequence of the robot 

moves by Q = { q (0), q (1), q (2), …, q ( k ), …} meaning that the robot 

sequentially unloads and transports parts from machines { M q (0) , 

M q (1) , M q (2) , …, M q ( k ) , …}, where q (0) = 0. Let move q ( k ) start at 

time t k , ( k = 0, 1, 2, …), where t 0 = 0. The necessary and sufficient 

conditions for the robot to serve machines without delays in se- 

quence { M q (0) , M q (1) , M q (2) , …, M q ( k ) , …} completing their opera- 

tions at times { t 0 , t 1 , t 2 ,…, t k ,…}, respectively, are 

t k + R q (k ) ,q ( k +1 ) 
≤ t k +1 , (k = 0 , 1 , 2 , . . . ) (4) 

Consider two consequent inequalities in (4) : 

t k + R q ( k ) ,q (k +1) ≤ t k +1 and t k +1 + R q ( k +1 ) ,q (k +2) ≤ t k +2 

Taking into account the triangle inequalities (1) we obtain: 

t k + R q ( k ) ,q (k +2) ≤ t k +2 . 

Continuing the summing-up along the sequence Q and taking 

into account the triangle inequalities (1) , we obtain 

t k + R q ( k ) ,q ( l ) 
≤ t l (5) 

for all k = 0, 1, 2, …; l = 1, 2, …; and t k < t l . 

Assume that at time t k , part s finishes its i th operation on ma- 

chine M q ( k ) , i.e. i = q ( k ). Substitute the completion times t k , ( k = 0, 

1, 2, …) in (5) by their expressions Y s + Z i , ( s = 0, 1, 2, …; i = 0, 

1, 2, …, m ). Depending on values Y s + Z i , two forms of inequalities 

(5) are possible: 

Y s + Z i + R i j ≤ Y q + Z j , i f Y s + Z i < Y q + Z j (6) 
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