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a b s t r a c t 

The mesh adaptive direct search algorithm (MADS) is an iterative method for constrained blackbox opti- 

mization problems. One of the optional MADS features is a versatile search step in which quadratic mod- 

els are built leading to a series of quadratically constrained quadratic subproblems. This work explores 

different algorithms that exploit the structure of the quadratic models: the first one applies an l 1 -exact 

penalty function, the second uses an augmented Lagrangian and the third one combines the former two, 

resulting in a new algorithm. It is notable that this latter approach is uniquely suitable for quadratically 

constrained quadratic problems. These methods are implemented within the NOMAD software package 

and their impact are assessed through computational experiments on 65 analytical test problems and 4 

simulation-based engineering applications. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

We consider the following constrained optimization problem: 

min 

x ∈X 
f (x ) 

subject to c j (x ) ≤ 0 , j ∈ � 1 , m � 
(1) 

where m is a positive integer, X is a subset of R 

n , f and (c j ) j∈ � 1 ,m � 

are real-valued functions, possibly evaluated by a computer simu- 

lation, seen as a blackbox with the following characteristics: func- 

tion evaluations take a long time to compute, the simulation may 

fail for some input values, the derivatives are not available and 

their approximations may be unreliable, and/or too expensive. The 

set X is often defined by bound on the variables. 

Derivative-free optimization (DFO, ( Conn, Scheinberg, & Vicente, 

2009 )) algorithms are designed to handle this type of problem. 

DFO methods do not use or try to approximate derivatives of the 

problems. Instead, they either rely on a direct search approach 

which uses a discretization of the solution space and generates 
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directions to test trial points, or they use model-based methods 

by constructing polynomial or other approximations to mimic the 

functions over some specified trust-region or as a surrogate for 

a line-search method. Recent surveys on blackbox and derivative- 

free optimization appear in Audet (2014) , Boukouvala, Misener, and 

Floudas (2016) . 

The present work focuses on the mesh adaptive direct search 

algorithm (MADS) ( Audet & Dennis, Jr., 2006 ) with quadratic mod- 

els ( Conn & Le Digabel, 2013 ). MADS principally relies on a pair of 

steps, called the search and the poll, to explore the space of vari- 

ables and a third step to update its parameters. Both the search 

and the poll are complementary: the search allows local and global 

exploration while the poll is local and ensures convergence. We 

consider a model-based approach in the search step that has no 

impact on the theoretical convergence analysis of MADS, but im- 

proves its practical performance. At each iteration k , the search 

builds local quadratic models near the current iterate x k for the ob- 

jective function f and for each of the m inequality constraints. This 

leads to a quadratically constrained quadratic subproblem over an 

l ∞ 

norm trust-region: 

min 

x ∈X 
f k (x ) 

subject to c k 
j 
≤ 0 , j ∈ � 1 , m � ∥∥x − x k 

∥∥
∞ 

≤ �k 

(2) 

where the scalar �k ≥ 0 defines the trust-region, f k is the quadratic 

model of the objective function near the current iterate x k and 

https://doi.org/10.1016/j.ejor.2017.10.058 

0377-2217/© 2017 Elsevier B.V. All rights reserved. 

Please cite this article as: N. Amaioua et al., Efficient solution of quadratically constrained quadratic subproblems within the mesh 

adaptive direct search algorithm, European Journal of Operational Research (2017), https://doi.org/10.1016/j.ejor.2017.10.058 

https://doi.org/10.1016/j.ejor.2017.10.058
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
https://doi.org/10.13039/501100000038
mailto:nadir.amaioua@gerad.ca
mailto:sebastien.le.digabel@gerad.ca
http://www.gerad.ca/Charles.Audet
http://researcher.watson.\penalty -\@M ibm.com/researcher/view.php?person$=$us-arconn
http://www.gerad.ca/\penalty -\@M Sebastien.Le.Digabel
https://doi.org/10.1016/j.ejor.2017.10.058
https://doi.org/10.1016/j.ejor.2017.10.058


2 N. Amaioua et al. / European Journal of Operational Research 0 0 0 (2017) 1–12 

ARTICLE IN PRESS 

JID: EOR [m5G; November 17, 2017;2:11 ] 

the (c k 
j 
) j∈ � 1 ,m � are the quadratic models of the m inequality con- 

straints. We prefer an l ∞ 

trust region because it has the same ori- 

entation as a box determined by simple bounds. 

In Conn and Le Digabel (2013) , to solve Problem (1) , a series of 

subproblems of the type (2) are created and each of them is solved 

with a new instance of MADS. The paper concludes by stating that 

the quadratic structure of the subproblems is not exploited and 

that a blackbox optimization solver is certainly not the appropriate 

choice to solve a quadratically constrained quadratic problem. The 

main purpose of this paper is to test dedicated algorithms to solve 

Problem (2) . We choose two widely known methods from the liter- 

ature: the l 1 -exact penalty function and the augmented Lagrangian 

methods. A new methodological approach combining the strengths 

of both methods is introduced and called the l 1 -augmented La- 

grangian: it uses an l 1 penalty term instead of the squared one 

used in the standard augmented Lagrangian. 

This paper is organized as follows. Section 2 describes the 

MADS algorithm and in particular, its mechanisms to build 

and use quadratic models. The section also summarizes sev- 

eral methods from the literature handling quadratic subproblems. 

Section 3 presents the l 1 -exact penalty function algorithm and 

Section 4 gives a description of the augmented Lagrangian method. 

Section 5 introduces the new l 1 -augmented Lagrangian method 

and describes implementation choices. Section 6 compares the 

results of the three algorithms on a set of 61 analytical and 4 

simulation-based test problems and Section 7 concludes with rec- 

ommendations. 

2. Literature review 

The MADS algorithm is an iterative method that uses a dis- 

cretization of the solution space, called the mesh, to select and 

evaluate new trial points. Each iteration of MADS consists of two 

main steps: the search and poll, followed by a parameter update 

step. 

The poll and update steps are critical to the convergence proof 

of MADS ( Audet & Dennis, Jr., 2006 ), but the search is optional 

and more flexible: it can be omitted or defined by the user. A fre- 

quently used search strategy ( Conn & Le Digabel, 2013 ) is to au- 

tomatically construct quadratic models to try and find a promis- 

ing trial point. If the search succeeds, i.e. the selected trial point 

improves upon the current iterate, then this trial point becomes 

the new iterate and the poll step is skipped. Moreover, the search 

direction can also be exploited elsewhere, for example to pri- 

oritize poll choices (see below). On the contrary, if the search 

fails, the poll step becomes mandatory. Other types of search step 

such as VNS ( Audet, Béchard, & Le Digabel, 2008 ) and surrogate- 

based ( Audet, Kokkolaras, Le Digabel, & Talgorn, 2017; Booker et al., 

1999 ) are not the topic of the present paper. In this paper, we use 

quadratic models in the search step since our understanding, and 

in fact our computational experience, suggest that it is likely to be 

the best, or at least one of the best, approaches. 

The poll is used to choose mesh points near the current iter- 

ate and to evaluate their objective and constraint values. On the 

one hand, if the poll fails to find a better solution, the update step 

will reduce the mesh size (the parameter that scales the space dis- 

cretization) and the poll size (maximum distance allowed between 

a trial point and the current iterate) in order to concentrate near 

the current iterate. On the other hand, once a better solution is 

found, the poll step terminates and the update step increases the 

mesh size. The diagram in Fig. 1 represents a description of the 

MADS algorithm with a search step based on quadratic models. 

The quadratic models constructed in the search step are also 

used in the poll step: the poll produces a list of trial mesh points, 

and instead of sending them directly to be evaluated, quadratic 

models of the objective function and of the constraints are used 

to sort the trial points, so that the most promising ones are eval- 

uated first. This approach is used in conjunction with the oppor- 

tunistic strategy: as soon as a better solution than the current iter- 

ate is found, the poll step stops without executing the simulation 

at the remaining trial points. Using quadratic models in both the 

search and poll steps greatly improves the MADS performance, as 

reported in Conn and Le Digabel (2013) . 

MADS relies on a cache structure, which stores all the evaluated 

points, to select an interpolation set in order to build the models. 

In the search step, the interpolation set is constructed by select- 

ing all the points from the cache that are inside the ball centered 

around the current iterate with a radius equal to twice the poll size 

parameter. In the poll step, quadratic models are used to order trial 

points, and interpolation points from the cache are selected within 

a ball centered around the current iterate with a radius 2 r , where 

r is the smallest radius of the ball centered in the current iterate 

and containing all the trial points ( Conn & Le Digabel, 2013 ). 

At each iteration of MADS, a quadratic subproblem of the 

form (2) is constructed and solved within the search step. The 

resulting solution is projected on the mesh to provide a start- 

ing point that satisfies the convergence requirements of MADS. 

The subproblem is similar to those arising in trust-region meth- 

ods called trust-region subproblems. Since the early eighties, many 

algorithms have been developed specifically to solve this kind of 

quadratic problems. The Moré and Sorenson algorithm (MS) ( Moré

& Sorensen, 1983 ) is one of the first algorithms used specifically 

for quadratic problems subject to an ellipsoidal constraint. It is 

based on solving the optimality conditions via the Newton algo- 

rithm with backtracking. The downside of this algorithm is that it 

uses Cholesky factorizations that become expensive for large ma- 

trices, which is not an issue in the present research since no large 

matrices are involved. Later, the generalized Lanczos trust-region 

algorithm (GLTR) ( Gould, Lucidi, & Toint, 1999 ) was implemented 

by using the MS algorithm on Krylov subspaces. However, GLTR 

could not handle hard cases (see chapter 7 in Conn, Gould, & 

Toint (20 0 0) ) of the trust-region subproblems. The same princi- 

ple is applied by the sequential subspace method (SSM) ( Hager, 

2001 ) that creates four dimensional subspaces instead of using the 

Krylov subspaces. Even if the SSM algorithm handles the hard case 

of the trust-region subproblem, it still solves quadratic problems 

over a sphere. The Gould-Robinson and Thorne algorithm ( Gould, 

Robinson, & Thorne, 2010 ) improved the MS algorithm by us- 

ing some high dimensional polynomial approximations that allow 

the Newton method to converge in fewer iterations. Another al- 

gorithm, that treats specifically quadratic problems over a con- 

vex quadratic constraint, is the Fortin-Rendl and Wolkowicz algo- 

rithm ( Fortin & Wolkowicz, 2004; Rendl & Wolkowicz, 1997 ) which 

rewrites the problem into an eigenvalue subproblem that can be 

handled by the Newton method combined with Armijo–Goldstein 

conditions. This algorithm is suitable for large-scale matrix 

problems. 

All the algorithms above are used for a quadratic objective 

over a unique constraint defining the trust-region. In our case, 

Problem (2) is additionally constrained by m quadratic constraints 

and, recently, one method was developed specifically for this 

kind of problems using an extension of the Fortin-Rendl and 

Wolkowicz algorithm ( Pong & Wolkowicz, 2014 ). Solving Prob- 

lem (2) can also be done by nonlinear optimization tools such 

as exact penalty functions and augmented Lagrangians. These 

latter two approaches are discussed further in the next two 

sections. 

3. The l 1 -exact penalty function ( l 1 EPF algorithm) 

The l 1 -exact penalty function starts by transforming Prob- 

lem (2) into the following bound-constrained problem: 
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