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a b s t r a c t 

This paper takes a fresh look at sensitivity analysis in linear programming. We propose a merged ap- 

proach that brings together the insights of Wendell’s tolerance and Wagner’s global sensitivity ap- 

proaches. The modeler/analyst is then capable of answering questions concerning stability, trend, model 

structure, and data prioritization simultaneously. Analytical as well as numerical aspects of the approach 

are discussed for separate as well as simultaneous variations in the objective function coefficients and 

right-hand side terms. A corresponding efficient numerical implementation procedure is proposed. A clas- 

sical production problem illustrates the findings. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Linear programs (LPs) are a central modelling tool for the 

solution of complex decision problems ( Bradley, Hax, & Magnanti, 

1977; Dantzig, 1982 ). Due to the availability of fast-solving algo- 

rithms, the use of LPs is now widespread. However, finding an 

optimal solution is only the beginning. After a model has been 

formulated and solved, we face the delicate task of testing results 

and developing managerial insights that guide the implementation 

of the optimal policy. 

The question raised in the literature since the seminal work of 

Little (1970) is: what are the insights that can be systematically 

inferred for LPs? We believe that answering this question involves 

focusing on a number of key properties: 

• Trend: is the variation in an uncertain datum going to increase 

or decrease the optimal profit? 
• Presence of interactions: if two data vary simultaneously, is 

the resulting change the simple direct sum of their individual 

effects; if not, how relevant are interactions? 
• Data prioritization: what datum is more responsible for 

variations in the optimal profit? 
• Data fixing: what data can be fixed, as they have a very low 

impact on the variation in the optimal profit? 
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• Stability: is the optimal policy stable to the variations in the 

data? 

Two main approaches to sensitivity analysis in linear program- 

ming are the tolerance approach of Wendell (1984 , 1985) and 

the global approach of Wagner (1995) . The goal of the tolerance 

approach is the determination of the maximum percent variation 

in the data under which the base case optimal solution remains 

optimal. The goal of Wagner’s global sensitivity analysis is the 

identification of the key variability drivers. Thus, neither a toler- 

ance nor a global sensitivity approach allows the analyst to address 

the above sensitivity questions simultaneously. In fact, a tolerance 

analysis (per se) would answer solely the last question. Wagner’s 

sensitivity measures (per se) would address the data prioritization 

and data fixing questions. Interactions quantification has not been 

addressed so far in LP applications. Trend identification has been 

addressed, while not formally, in the so-called ordinary sensitivity 

analysis ( Koltai & Tatay., 2011; Koltai & Terlaky., 20 0 0 ). However, 

ordinary sensitivity analysis foresees variation of one datum at a 

time and has several limitations ( Jan, 1997 ). 

Herein we address the research question of merging the 

global and tolerance sensitivity approaches into a global tolerance 

approach for a sensitivity analysis of LPs that: (a) allows for 

simultaneous variations in the data; (b) yields an answer to the 

five sensiti vity questions mentioned above; and (c) is not too 

computationally demanding. 

To merge them, we first show how Wagner’s approach can be 

fruitfully nested in the high dimensional model representation 

(HDMR) framework ( Liu & Owen., 2006; Sobol’, 1993b ). This 
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nesting enables us to bring a series of recent conceptual and com- 

putational innovations in HDMR theory to sensitivity analysis in 

LP. These innovations include: a reinterpretation of Wagnerâs two 

measures as first and total order effects with respect to an analysis 

of variance (ANOVA) decomposition of variations in the optimal 

value of the objective function (henceforth called optimal value 

function); the introduction of the concept of one-way ANOVA 

sensitivity functions as a sensitivity tool in LP; and the application 

of efficient computational HDMR methods for analyzing sensitivity 

in linear optimization. We discuss numerical and analytical aspects 

in detail. In particular, we show that numerical values of Wagner’s 

sensitivity measures and the behavior of one-way sensitivity 

functions are intertwined with stability insights. 

Using the notion of an uncertainty set U ( Dantzig, 1955, 1963 ) 

as the bridge that links the data variations in Wendell’s and 

Wagner’s approaches, the merging enables us to show how the 

numerical values of Wagner’s sensitivity measures and the behav- 

ior of one-way sensitivity functions are intertwined with stability 

insights. In particular, when an uncertainty set U is given by a 

hyperbox which in turn is a subset of an optimal coefficient set, 

then we show that: Wagners measures and one-way sensitivity 

functions can be characterized analytically; all one-way sensitivity 

functions are linear; Wagners sensitivity measures sum to unity; 

and no interactions are present. Conversely, if we register non-null 

higher order variance-based sensitivity measures, slope changes or 

curvature in one-way sensitivity functions, then we are informed 

that U intersects multiple optimal coefficient sets and the base 

case optimal policy is not stable. When U intersects multiple 

coefficient sets, we show that interactions emerge due to the 

piecewise linear nature of the optimal value function and not 

because of the presence of multiplicative terms in the optimal 

value function. This result is peculiar to LPs. Our analysis is not 

limited to variations in the objective function coefficients, but we 

give corresponding results for variations in right-hand-side (RHS) 

terms and in joint variations of the coefficients and RHS terms. 

We rely on the sparse grid interpolation method of Buzzard 

(2012) that permits us to estimate all relevant sensitivity measures 

with a parsimonious number of the LP model evaluation. To assess 

whether it is possible to obtain sensitivity measures numerically 

within reasonable computational times, we perform a series of 

tests with problems from the Netlib database. We use the classic 

production problem from Nahmias and Olsen. (2015) to illustrate 

the approach and discuss the insights obtained from our results as 

they apply to each of the five key properties described above. 

The remainder of the paper is organized as follows. 

Section 2 reviews the essentials of tolerance and global sensi- 

tivity analysis. Section 3 takes a fresh look at Wagner’s variance 

based sensitivity measures through the HDMR framework. Then 

Section 4 links the tolerance approach with the HDMR framework 

and gives results for variations in the objective function coeffi- 

cients ( Section 4.1 ), the RHS terms ( Section 4.2 ), and simultaneous 

RHS and coefficients variations ( Section 4.3 ). Section 5 evaluates 

the computational feasibility of the approach using a sample of 

Netlib problems and applies the findings to the Nahamias test 

case. Section 6 concludes the work and proposes future research 

perspectives. 

2. Tolerance sensitivity: A review 

Consider a LP in standard form 

max 
x 

cx 

s.t. 

A x = b , x ≥ 0 , (1) 

where c = (c 1 , c 2 , . . . , c n ) is the vector of objective function coeffi- 

cients, A is the coefficient matrix, and b is the vector of RHS terms. 

The linear objective function y = cx defines the value of profit (or 

whatever payoff is of interest to the decision maker). We call a 

vector that solves the problem in (1) an optimal solution and we 

denote it by x ∗, and we call the corresponding value of the objec- 

tive function the optimal profit (denoted by y ∗). Both the optimal 

solution and the optimal profit depend on the values assigned to 

A , b , and c . If the analyst specifies a base case value ̂ A , ̂  b , ̂  c for the 

data, then using these in (1) gives the base case optimal solution 

and optimal profit, which we denote by ̂  x ∗ and ̂

 y ∗, respectively. 

Work in the area of sensitivity in LP dates back into the 1950s 

(see Gal, 1997 for a historical overview) and it is still an active 

research area (see, among others, Filippi, 2010; Koltai & Tatay., 

2011; Shahin, Hanafizadeh, & Hladk, 2016; Xu & Burer., 2016 ). We 

also refer to Shahin et al. (2016) and the references therein for 

a thorough review of the literature. Contemporary LP software 

implements solely a so-called ordinary sensitivity analysis, whose 

limitations are well known – see, among others, Gal (1992) ; Jan 

(1997) ; Koltai and Tatay. (2011) ; Koltai and Terlaky. (20 0 0) . As 

noted by Bradley et al. (1977) and as termed the 100 percent rule 

by them, ordinary sensitivity analysis can be applied to consider 

simultaneous variations of the coefficients/terms within the con- 

vex hull of the ordinary intervals. However, as explained in Ward 

and Wendell. (1990) ; Wendell (1985) , the use of the 100 percent 

rule has significant computational limitations as well as a serious 

conceptual challenge in requiring a decision-maker to think in 

terms of additive fractional changes of percent variations. 

Following the characterization of tolerance sensitivity (see 

Wendell, 1984, 1985 ), we consider the following perturbed form 

of Problem (1) : 

max 
x 

n ∑ 

j=1 

( ̂  c j + γ j c 
′ 
j ) x j 

s.t. 
n ∑ 

j=1 

( ̂  a i, j + αi, j a 
′ 
i, j ) x j = ̂

 b i + δi b 
′ 
i , for i = 1 , 2 , . . . , m 

x j ≥ 0 , for j = 1 , 2 , . . . , n, (2) 

where A 

′ , b ′ and c ′ denote matrices (vectors) of selected data 

and where γ , δ, α denote perturbations. If c ′ = ̂

 c , b 

′ = ̂

 b , and 

A 

′ = ̂

 A , then γ , δ and α represent vectors of percentage variations 

(or errors) in the data around the base case value ( Wendell, 

1985 ). In some cases we may be able to specify a region within 

which the perturbations are known to vary. Such a region is 

called an a priori set of permissible perturbations (permissible 

set, henceforth). We denote this a priori set by P and without 

ambiguity P includes whatever perturbations (objective function, 

right-hand-side, constraint coefficients) are being considered. 

In tolerance sensitivity it is assumed that ̂ A has full row 

rank ( Wendell, 1985 ) and that ̂ x ∗ is an optimal basic feasible 

solution. Let J = { 1 , 2 , . . . , n } denote the set of all indices, let 

J ∗ = { j 1 , j 2 , . . . , j r } denote the indices in the optimal basis and let 

K = J \ J ∗ denote the indices outside the optimal basis. Then, let 

B −1 and B −1 
i, · denote the inverse of the optimal basis matrix and 

its i th row, respectively. Consider next variations in the objective 

function coefficients and let the data vary in a given permissible 

set of objective function perturbations. Tolerance sensitivity aims 

at determining the largest value τ , denoted by τ ∗, such that if γ is 

in the permissible set and if −τ ≤ γ j ≤ τ , then the optimal basis 

(including the slack variables) is unaltered. The set of γ ’s within 

the permissible set and within the intervals −τ ∗ ≤ γ j ≤ τ ∗ is 

called the maximum tolerance region , and the number τ ∗ is called 

amaximum tolerance for the coefficients . As given in Wendell (1984) , 

finding the maximum tolerance can be viewed as a two-step 
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