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a b s t r a c t 

It is well-known that the convergence rates of nonparametric efficiency estimators (e.g., free-disposal 

hull and data envelopment analysis estimators) become slower with increasing numbers of input and 

output quantities (i.e., dimensionality). Dimension reduction is often utilized in non-parametric density 

and regression where similar problems occur, but has been used in only a few instances in the context of 

efficiency estimation. This paper explains why the problem occurs in nonparametric models of production 

and proposes three diagnostics for when dimension reduction might lead to more accurate estimation 

of efficiency. Simulation results provide additional insight, and suggest that in many cases dimension 

reduction is advantageous in terms of reducing estimation error. The simulation results also suggest that 

when dimensionality is reduced, free-disposal hull estimators become an attractive, viable alternative to 

the more frequently used (and more restrictive) data envelopment analysis estimators. In the context of 

efficiency estimation, these results provide the first quantification of the tradeoff between information 

lost versus improvement in estimation error due to dimension reduction. Results from several papers 

in the literature are revisited to show what might be gained from reducing dimensionality and how 

interpretations might differ. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Data envelopment analysis (DEA) and free-disposal hull (FDH) 

estimators are widely used to estimate technical efficiency, changes 

in productivity, returns to scale and other performance bench- 

marks. Farrell (1957) first introduced the DEA estimator which 

were subsequently popularized by Charnes, Cooper, and Rhodes 

(1978) , while the FDH estimator was introduced by Deprins, Simar, 

and Tulkens (1984) . The statistical properties of the estimators are 

developed in a number of papers; see the recent surveys by Simar 

and Wilson (2013, 2015) for details and discussion. 

Practitioners using FDH or DEA estimators have long been 

aware that increasing the number of inputs or outputs causes (i) 

firms to appear increasingly efficient and (ii) increasing numbers 

of firms to lie on the estimated frontier. Because of this, a number 

of ad hoc “rules of thumb” for lower bounds on the sample size 

n in problems with p inputs and q outputs are proposed in the 
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literature. Bowlin (1987 , pp. 128–129), Golany and Roll (1989 , 

p. 239), Vassiloglou and Giokas (1990 , p. 592), and Homburg 

(2001 , p. 56), propose n ≥ 2(p + q ) , while Banker, Charnes, Cooper, 

Swarts, and Thomas (1989 , pp. 138–139), Bowlin (1998 , p. 18), 

Friedman and Sinuany-Stern (1998 , p. 783), and Raab and Lichty 

(2002 , p. 589), propose n ≥ 3(p + q ) . Paradi, Vela, and Yang (2004 , 

p. 359), split the difference by stating that n should be at least 

two to three times the total number of inputs plus outputs. 

Boussofiane, Dyson, and Thanassoulis (1991 , p. 4), suggest n ≥ pq , 

and Dyson et al. (2001 , p. 148), suggest n ≥ 2 pq . Cooper, Seiford, 

and Tone (20 0 0 , pp. 106 and 272), Cooper, Li, Seiford, and Zhu 

(2004 , p. 77), and Banker, Emrouznejad, Lopes, and de Almeida 

(2012 , p. 231), suggest n ≥ max (pq, 3(p + q )) . No theoretical jus- 

tification is given for any of these rules, and as will be seen below, 

the suggested minimum sample sizes are too small to allow one to 

obtain meaningful estimates of technical efficiency. 

In many cases, production data have substantial multicollinear- 

ity. This paper shows how multicollinearity among inputs or 

outputs can be exploited to reduce the dimensionality of non- 

parametric production models, resulting in (presumably) more 

accurate estimates of efficiency. While the methodology is not 

new, there are to date only a handful of instances where it has 

been adopted by practitioners working in the field of nonpara- 

metric efficiency estimation. Moreover, until now there has been 

almost no evidence on the specific nature of the tradeoff between 

information sacrificed when reducing dimensionality versus any 
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gains in terms of reduced estimation error that might result, 

nor are there useful guidelines for when dimension-reduction 

should be employed. Simulation results provided below show that 

substantial improvements in the accuracy of efficiency estimates 

are possible with dimension reduction and further suggest that 

these improvements are likely possible in many applications. 

Three diagnostics are provided to give the applied researcher 

insight regarding whether dimension reduction might be useful. 

The problems of dimensionality, as well as the diagnostics and 

the potential for useful dimension reduction are further illustrated 

with real data from several papers in the published literature. 

The inverse relationship between dimensionality and conver- 

gence rates of estimators is well-known in nonparametric statistics 

and econometrics, and is often called the “curse of dimensionality”

after Bellman (1957) . Silverman (1986) and Scott (1992) discuss the 

problem in the context of nonparametric density estimation, while 

Härdle (1990) , Pagan and Ullah (1999) , Henderson and Parmeter 

(2015) , Persson, Häggström, Waernbaum, and de Luna (2017) and 

Rekabdarkolaee, Boone, and Wang (2017) examine the problem in 

the context of regression. By now it is also well-known that the 

same curse of dimensionality affects the convergence rates of non- 

parametric DEA and FDH estimators used in the analysis of pro- 

ductive efficiency; see Simar and Wilson (2013, 2015) and the pa- 

pers cited therein for details. It is perhaps less-well appreciated, 

but nonetheless true that dimensionality also affects partial fron- 

tier estimators such as the order- m estimators developed by Cazals, 

Florens, and Simar (2002) , Wilson (2011) and Simar and Vanhems 

(2012) and the order- α estimators developed by Aragon, Daouia, 

and Thomas-Agnan (2005) , Daouia and Simar (2007) , Wheelock 

and Wilson (2008) and Simar and Vanhems (2012) (see Simar and 

Wilson, 2013, 2015 , for recent surveys of order- m and order- α es- 

timators). In the case of the order- m and order- α estimators, the 

convergence rate is not affected by the number of dimensions, but 

mean-square error increases with the number of dimensions (i.e., 

the number of inputs and outputs) for a given sample size. In ex- 

treme cases, all observations in a given sample may lie on the 

estimated frontier when full-frontier DEA or FDH estimators are 

used, or all observations may lie above the estimated partial fron- 

tier when order- m or order- α estimators are used, even if m is very 

large (but finite) or α is very close (but not equal) to one. 

In the density and regression contexts, dimension-reduction 

methods are often used to mitigate the effects of dimensionality. 

Scott (1992) discusses several approaches in the density estimation 

context. In the regression context, Wheelock and Wilson (2001) , 

Wheelock and Wilson (2012) and Wilson and Carey (2004) use 

eigensystem techniques to reduce dimensionality. In the context of 

nonparametric frontier estimation, eigensystem techniques for di- 

mension reduction are proposed by Adler and Golany (20 01, 20 07) , 

Mouchart and Simar (2002) and Daraio and Simar (2007 , pp. 148–

150) but have seen little use in the empirical literature. 1 

As discussed below in Section 2 , the curse of dimensionality is a 

serious problem in nonparametric efficiency estimation, and there 

are numerous examples in the literature where it has been ig- 

nored. Where the problem exists—and where it is ignored—dubious 

results may be obtained. Section 2.1 presents a nonparametric 

model of production, and the nonparametric FDH and DEA effi- 

ciency estimators and their properties, including convergence rates, 

1 Adler and Golany (20 01, 20 07) decompose correlation matrices of either in- 

puts or outputs (but not both), whereas Mouchart and Simar (2002) and Daraio 

and Simar (2007) decompose (raw) moment matrices of both inputs and outputs. 

Florens, Simar, and Van Keilegom (2014) and Daraio, Simar, and Wilson (2017) use 

these methods in applications, but their applications are only empirical illustra- 

tions in papers that otherwise are focused on statistical theory and methodology. 

Mouchart and Simar (2002) and Adler, Liebert, and Yazhemsky (2013) provide ex- 

amples where dimension-reduction methods are used in studies driven by their 

empirical applications. 

are presented and briefly discussed in Section 2.2 . Section 2.3 gives 

some additional insight on why the curse of dimensionality arises. 

Section 3 discusses two methods for diagnosing when the curse of 

dimensionality is likely to substantially affect estimation error. The 

eigensystem methods proposed by Mouchart and Simar (2002) and 

Daraio and Simar (2007) are explained in Section 4 . These meth- 

ods, together with the simulation results presented later, provide 

a third diagnosis for the curse of dimensionality. Monte Carlo re- 

sults are presented in Section 5 , and some real-world examples 

are given in Section 6 to illustrate both the need for dimension- 

reduction and how results can change when dimensionality is re- 

duced. Conclusions are discussed in Section 7 . 

2. The problem of too many dimensions 

2.1. A nonparametric model of production 

Let x, X ∈ R 

p 
+ denote vectors of p input quantities, and let y, Y ∈ 

R 

q 
+ denote vectors of q output quantities, with upper-case letters 

denoting random variables and lower-case denoting non-stochastic 

values. The production set is given by 

� := { (x, y ) | x can produce y } . (1) 

Various measures of technical efficiency are available; e.g., consider 

the Farrell (1957) input-oriented measure 

θ (x, y ) := inf { θ | (θx, y ) ∈ �, θ > 0 } . (2) 

Clearly, for ( x , y ) ∈ � , θ ( x , y ) ≤ 1. To conserve space, the presen- 

tation that follows is only in terms of the input orientation; all 

of the qualitative results obtained herein hold when efficiency is 

measured in other directions. 

Of course, � and hence θ ( x , y ) are unknown and must be es- 

timated from a sample of observations S n = { (X i , Y i ) } n i =1 . But be- 

fore anything can be estimated, and certainly before one can make 

inference, a statistical model must be specified. The following as- 

sumptions specify a statistical model similar to the one defined by 

Kneip, Simar, and Wilson (2008) . 

Assumption 2.1. � is (a) closed and (b) convex. 

Assumption 2.2. If x = 0 , y ≥ 0, y � = 0 , then (x, y ) �∈ �, i.e., all pro- 

duction requires use of some inputs. 

Assumption 2.3. For ˜ x ≥ x, ˜ y ≤ y, if ( x , y ) ∈ � then ( ̃  x , y ) ∈ � and 

(x, ̃  y ) ∈ �, i.e., both inputs and outputs are strongly disposable. 2 

Assumption 2.4. The n observations in S n are identically, indepen- 

dently distributed (iid) random variables on the attainable set � . 

Assumption 2.5. (a) The ( X , Y ) possess a joint density f with sup- 

port D ⊆ �; (b) f is continuous on D; and (c) f ( θ ( x , y ) x , y ) > 0 for 

all ( x , y ) in the interior of D. 

Assumption 2.6. The function θ ( x , y ) is twice continuously differ- 

entiable for all (x, y ) ∈ D. 

Assumptions 2.1–2.3 are standard in the economic literature 

(e.g., see Shephard, 1970 or Färe, 1988 ). Assumption 2.1 ensures 

that the frontier 

�∂ = 

{
(x, y ) | (x, y ) ∈ �, (γ −1 x, γ y ) �∈ � ∀ γ ∈ (1 , ∞ ) 

}
(3) 

is included in � , i.e., �∂ ⊂� . As noted below, DEA estima- 

tors require convexity of � , but FDH estimators do not (the 

2 Per convention, inequalities involving vectors are defined on an element-by- 

element basis. 
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