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affine maximizers for an important missing case in the literature: that of two alternatives with restricted 

domain. We use two independent conditions: Positive Association of Differences and an independence 

condition. 
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1. Introduction 

The implementability of social choice functions is an impor- 

tant concept for many operations research problems (e.g., Fadaei 

& Bichler, 2017 ; Papakonstantinou & Bogetoft, 2017; Thirumu- 

lanathan, Vinay, Bhashyam, & Sundaresan, 2017 ; Kakade, Lobel, 

& Nazerzadeh, 2013) . Roberts (1979) showed that every imple- 

mentable social choice function satisfies a condition named PAD 

(Positive Association of Differences). Conversely, when there are at 

least three alternatives and the domains of individual preferences 

are unrestricted, he showed that PAD implies that any onto social 

choice function is an affine maximizer. When there are two alter- 

natives only, it is well-known that Roberts’ Theorem does not hold 

because there exist social choice functions satisfying PAD on un- 

restricted domains and that are not affine maximizers. In previ- 

ous work ( Marchant & Mishra, 2015 ), we have shown that an In- 

dependence condition must be added to PAD in order to charac- 

terize affine maximizers when there are only two alternatives and 

when the domain of the valuations consist of an open interval un- 

bounded from above. 

Yet, in some applications, it is not realistic to suppose that the 

domain of valuations is unbounded from above. Suppose for exam- 

ple a budget-constrained planner is considering to provide one of 

two public goods: either open a park or open a football stadium. 

It is reasonable to assume that both the public goods have positive 
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valuation to agents – thus the valuations have a lower bound. Also, 

it is natural that the planner can always subsidize enough amount 

of money to the agents and not provide any of the public goods. 

In other words, there is also an upper bound on the valuations. 

That is why, in this paper, we show that the same conditions as 

in Marchant and Mishra (2015) characterize the affine maximizers 

with two alternatives and domains of valuations consisting of an 

open interval, without the unboundedness restriction. 

Section 2 is devoted to the definitions and the result. The proof 

is presented in Section 3 . 

2. Definitions, axioms and result 

Let M = { 1 , . . . , m } be a finite set of agents. The set of out- 

comes or social states is denoted by A = { a, b} . Each outcome is 

valued by each agent. The valuation of outcome a (resp. b ) by 

agent i is drawn from some real open interval L i . We define S = 

�i ∈ M 

L i . A vector x ∈ S represents the valuations of an outcome by 

all agents. In their characterization of affine maximizers, Marchant 

and Mishra (2015) assumed that L i is unbounded from above, for 

each agent i . Since this restriction can be unrealistic in many ap- 

plications, we will not assume it in this paper. 

An allocation rule is a mapping f : S × S → A : ( x , s ) → f ( x , s ), 

where x (resp. s ) is the vector of valuations of a (resp. b ) by all 

agents. 

Vector inequalities: for x, y ∈ R 

n , x � y iff x i > y i for i = 1 , . . . , n ; 

x > y iff x i ≥ y i for i = 1 , . . . , n and x j > y j for some j ; x ≥ y iff x i ≥ y i 
for i = 1 , . . . , n . 

We now present the conditions that we will need in order to 

characterize the affine maximizers when there are only two alter- 
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natives. The first one is the well-known Positive Association of Dif- 

ferences introduced by Roberts (1979) . 2 

PAD: for all x , y , s , t , if x − y � s − t and f (y, t ) = a then 

f (x, s ) = a . 

Notice that PAD implies the symmetric condition : s − t � x − y 

and f (y, t) = b implies f (x, s ) = b. 

Our next condition is a form of independence. It was first used 

by Marchant and Mishra (2015) . 

Independence: For all s , t , x , y ∈ S , 

f (x, t) = a 
and 

f (y, s ) = a 

} 

⇒ 

{ 

f (y + ε, t) = a, ∀ ε � 0 : y + ε ∈ S 
or 
f (x + ε, s ) = a, ∀ ε � 0 : x + ε ∈ S. 

The intuition behind this condition is that elements of S can be 

ordered from “more in favor of a ” to “less in favor of a ”. Indeed, 

suppose the elements of S can be ordered and suppose the an- 

tecedent of Independence is satisfied. Then either x is not less in 

favor of a than y or y is not less in favor of a than x . In the first 

case, f (x + ε, s ) = a and in the second case, f (y + ε, t) = a . We do 

not consider this condition as compelling. Whether it is appeal- 

ing or not can depend on the context and the social planner. Para- 

phrasing Sen (1976) , p.254, our independence condition is not de- 

signed “to provide an axiomatic justification of” affine maximizers. 

Instead, we chose “a set of axioms with the focus on transparency 

rather than on immediate appeal” (Sen, 1976, p. 259) . 3 

In order to help the reader have a better grasp of the conditions 

presented so far, we now provide two examples showing that PAD 

and Independence are logically independent. 

Example 1. Let L i = ]0 , 100[ for all i ∈ M = { 1 , 2 , 3 } and define the 

allocation rule f with three agents as follows: for all x , s ∈ S , 

f (x, s ) = a ⇐⇒ 

∑ 

i ∈ M 

x 2 i > 

∑ 

i ∈ M 

s 2 i . 

This allocation rule violates PAD. To see this, use x = (16 , 10) , y = 

(5 , 9) , s = (20 , 2) and t = (10 , 2) . This allocation rule satisfies Inde- 

pendence. Indeed, suppose f (x, t) = a and f (y, s ) = a . This implies ∑ 

i ∈ M 

x 2 
i 

> 

∑ 

i ∈ M 

t 2 
i 

and 

∑ 

i ∈ M 

y 2 
i 

> 

∑ 

i ∈ M 

s 2 
i 
. Two cases are possible. 

•
∑ 

i ∈ M 

x 2 
i 

> 

∑ 

i ∈ M 

y 2 
i 
. Then 

∑ 

i ∈ M 

x 2 
i 

> 

∑ 

i ∈ M 

s 2 
i 

and 

∑ 

i ∈ M 

(x i + 

ε i ) 
2 > 

∑ 

i ∈ M 

s 2 
i 

for all ε � 0. Hence f (x + ε, s ) = a . 

•
∑ 

i ∈ M 

x 2 
i 

≤ ∑ 

i ∈ M 

y 2 
i 
. Then 

∑ 

i ∈ M 

y 2 
i 

> 

∑ 

i ∈ M 

t 2 
i 

and 

∑ 

i ∈ M 

(y i + 

ε i ) 
2 > 

∑ 

i ∈ M 

t 2 
i 

for all ε � 0. Hence f (y + ε, t) = a . 

So, at least one of f (y + ε, t) and f (x + ε, x ) is equal to a as 

required by Independence. 

Example 2. Let L i = ]0 , 10[ for all i ∈ M = { 1 , 2 , 3 } and define the 

allocation rule f with three agents as follows: 

f (x, s ) = a ⇐⇒ 

∑ 

i ∈ M 

(x i − s i ) 
3 ≥ 0 . 

This allocation rule violates Independence and satisfies PAD. 

To check that it violates Independence, use x = (6 , 3 , 7) , 

y = (6 , 7 , 1) , t = (9 , 6 , 3) and s = (9 , 1 , 6) . We have f (x, t) = a, 

f (y, s ) = a, f (y + ε, t) = b and f (x + ε, s ) = b with ε = 

(1 / 10 , 1 / 10 , 1 / 10) . We now prove that it satisfies PAD. Sup- 

pose f (y, t) = a and x − y � s − t . Then 

∑ 

i ∈ M 

(y i − t i ) 
3 ≥ 0 

and x − s � y − t (or x i − s i > y i − t i for i ∈ M ). This implies ∑ 

i ∈ M 

(x i − s i ) 
3 > 

∑ 

i ∈ M 

(y i − t i ) 
3 ≥ 0 because the third power is 

strictly monotonic. Hence f (x, s ) = a . 

We are now ready to state our result. 

2 Roberts shows PAD is implied by an incentive compatibility condition. 
3 Our view of the axiomatic analysis is also close in spirit to that of Thomson 

(2001) , in a different domain. 

L1

L2

L3

Fig. 1. An affine maximizer, with three agents with valuation domains L 1 , L 2 and 

L 3 . The set D is the grey zone between the two darker planes. Under D , b is chosen 

everywhere and above D , a is chosen everywhere. 

Theorem 1. Suppose for every i ∈ M , L i is an open interval. The allo- 

cation rule f satisfies PAD and Independence iff there is λ ∈ R 

M with 

λ> 0 and a real-valued mapping κ : A → R such that, for all x , s ∈ S , ∑ 

i ∈ M 

λi x i + κ(a ) > 

∑ 

i ∈ M 

λi s i + κ(b) ⇒ f (x, s ) = a 

∑ 

i ∈ M 

λi x i + κ(a ) < 

∑ 

i ∈ M 

λi s i + κ(b) ⇒ f (x, s ) = b. 

This result is essentially identical to Theorem 2 in Marchant 

and Mishra (2015) , but without the unboundedness restriction. The 

proof technique used here is different from the one in Marchant 

and Mishra (2015) . The reason why we can now prove a stronger 

result using the same conditions as in Marchant and Mishra 

(2015) is perhaps the different technique, but it is perhaps merely 

the fact that we worked hard to go around all technical problems 

raised by the boundaries. 

Since affine maximizers and our two conditions have been ex- 

tensively discussed elsewhere, we do not discuss them and we 

merely present the proof of Theorem 1 . 

3. Proof 

An allocation rule is single-valued and, formally, it is therefore 

never the case that a and b tie. Yet, if f (x + ε, t) = a and f (x −
ε, t) = b for all ε � 0 , 4 we can consider that the valuation x ex- 

actly offsets t : any slight change in favor of a (or b ) immediately 

results in a winning (or b ). This will be denoted by x T t . 

Define D = { x ∈ S : x T t for some t ∈ S} . The set D is the set of 

all valuations of a that can be offset by some valuation t of b . It 

is represented in Fig. 1 in the case of an affine maximizer with 

three agents. If κ(a ) = κ(b) , then D is the whole box S . The larger 

the absolute difference | κ(a ) − κ(b) | , the smaller D . If the absolute 

difference is very large, then D is empty. 

Define the relation � on D by x � y iff, for all t ∈ S , we have 

f (y, t) = a ⇒ [ f (x + ε, t) = a, ∀ ε � 0] . When it is not the case that 

x � y , we write x � � y . The binary relation � will play a central role 

in the proof. Fig. 2 depicts an indifference surface of the relation �
in the case of an affine maximizer with three agents. 

The proof works as follows. First, we will prove that � is a 

monotonic weak order ( Lemmas 1–3 ). Lemmas 4–7 are a first at- 

tempt at understanding the shape of D (the domain of definition 

of �). With Lemma 8 , we will prove that � is continuous. Lemmas 

10 and 11 teach us that D is connected while Lemmas 12 and 

4 Strictly speaking, we should write “for all ε � 0 such that x + ε ∈ S and x − ε ∈ 
S”, because, otherwise, it can happen that f (x + ε, t) or f (x − ε, t) is not defined. 

This would make the paper very cumbersome and we will therefore omit it. 
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