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a b s t r a c t 

This work presents a strategic observable model where customer heterogeneity is induced by the cus- 

tomers’ locations and travel costs. The arrival of customers with distances less than x is assumed to be 

Poisson with rate equal to the integral from 0 to x , of a nonnegative intensity function h . In a loss system 

M/G/1/1 we define the threshold Nash equilibrium strategy x e and the socially-optimal threshold strategy 

x ∗. We investigate the dependence of the price of anarchy (PoA) on the parameter x e and the intensity 

function. For example, if the potential arrival rate is bounded then PoA is bounded and converges to 1 

when x e goes to infinity. On the other hand, if the potential arrival rate is unbounded, we prove that x ∗/ x e 
always goes to 0, when x e goes to infinity and yet, in some cases PoA is bounded and even converges to 

1; if h converges to a positive constant then PoA converges to 2; if h increases then the limit of PoA is at 

least 2, whereas if h decreases then PoA is bounded and the limit of PoA is at most 2. In a system with 

a queue we prove that PoA may be unbounded already in the simplest case of uniform arrival. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Customers of a service system often have heterogeneous ser- 

vice valuations, and this heterogeneity may be caused by various 

reasons. In this paper we study a model with customers located at 

different distances from the service facility, and therefore incur dif- 

ferent “travel costs”. Of course “location” may refer to a geographic 

location or it may serve as a metaphoric way expressing different 

preferences on the ideal type of service. We study the price of an- 

archy (PoA) comparing the social welfare produced by the system 

under socially-optimal and individually-optimal customer behavior. 

In our model, the potential arrival rate of customers at distance at 

most x is defined as the integral of a given density function. This 

structure of heterogeneity enables us to obtain interesting conclu- 

sions on the PoA. 

The performance of service systems with strategic customers 

has attracted much attention in recent years (see, for example, 

Hassin, 2016; Hassin & Haviv, 2003 ). Naor (1969) was the first 

to introduce a queueing model that describes customer ratio- 

nal decisions. The model considers an FCFS M/M/1 system with 

homogeneous customers, a fixed reward associated with service 
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completion, and linear waiting costs. The Nash equilibrium solu- 

tion in this model is simple since there exists a dominant pure 

threshold strategy n e , such that an arriving customer joins the 

queue if and only if the observed queue upon arrival is shorter 

than n e . This strategy maximizes the individual’s expected welfare 

regardless of the strategies adopted by the others. The socially- 

optimal behavior is characterized by a pure threshold strategy n ∗

such that n ∗ ≤ n e . 

The price of anarchy measures the inefficiency of selfish behav- 

ior. It is defined as the ratio of the social welfare under optimum 

to the social welfare in equilibrium. 

Naor assumes that customers are homogeneous with respect to 

service valuation, and much of the literature on observable queues 

(i.e., assuming customers know the queue length before joining it) 

follow this assumption. Some exceptions are described in Section 

2.5 of Hassin and Haviv (2003) . For example, Larsen (1998) as- 

sumes that the service value is a continuous random variable and 

proves that the profits and social welfare are unimodal functions of 

the price. For the case of a loss system (where customers join only 

if the server is idle) Larsen proves that the profit-maximizing fee 

exceeds the socially optimal fee. Miller and Buckman (1987) con- 

sider an M/M/ s / s loss system with heterogeneous service values 

and characterize the socially optimal fee. 

Some authors recently investigated the PoA in various service 

systems (see, for example, Hassin & Kleiner, 2011; Wang, Zhang, 

& Huang, 2017 and Section 5.8 in Hassin, 2016 ). Most relevant to 
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our work is Gilboa-Freedman, Hassin, and Kerner (2014) where the 

PoA in Naor’s model is shown to have an odd behavior. It increases 

sharply (from 1.5 to 2) as the arrival rate comes close to the ser- 

vice rate and becomes unbounded exactly when the arrival rate is 

greater than the service rate, which is odd since the system is al- 

ways stable. 

In this paper we introduce heterogeneity in service valuation 

through a Hotelling-type model where customers reside in a “lin- 

ear city” and incur “transportation costs” from their locations to 

the location of the server. Similar models have been investigated 

(e.g. D’aspremont, Gabszewicz, & Thisse, 1979; Dobson & Stavru- 

laki, 2007; Economides, 1986; Gallay, Olivier, & Hongler, 2008; 

Hotelling, 1929; Kwasnica & Euthemia, 2008; Pangburn & Stavru- 

laki, 2008; Ray & Jewkes, 2004 and Sections 6.7 and 7.5 in Hassin, 

2016 ) but they all assume a constant density (possibly restricted 

to an interval). In contrast, we allow non-uniform distributions of 

customer locations, and the potential arrival of customers with dis- 

tances less than x from the service facility is with rate λ(x ) = ∫ x 
0 h (y ) dy < ∞ , where h ( y ) is a nonnegative “intensity” function 

of the distance y . The intensity function and (linear) travel costs 

jointly generate the distribution of customer service valuations. A 

simple example is a two-dimensional city, in which the arrival of 

customers is uniform. In this case the intensity function can be 

defined as h (x ) = 2 πx, and so the arrival of customers with dis- 

tances less than x is assumed to be a Poisson process with rate 

λ(x ) = 

∫ x 
0 2 πydy = πx 2 . 

We first consider an M/G/1/1 loss system and define x e as the 

threshold Nash equilibrium strategy, namely the maximal distance 

from which customers will enter service under individual optimal- 

ity, and x ∗ as the threshold value that attains optimal social wel- 

fare. We show how x e is determined by the parameters R , μ, c t and 

c w 

, and the function h , of the model. 

We prove that PoA → 1 when x e → 0. The behavior of PoA when 

x e → ∞ is more complex and interesting: 

• The PoA limit does not always exist, and it may be infinite. 
• If the potential amount of customers arriving from long dis- 

tances is small (i.e., 
∫ ∞ 

0 h (y ) dy < ∞ ), then in the limit there is 

no difference between the social and equilibrium optimal bene- 

fits, namely lim 

x e →∞ 

PoA (h, x e ) = 1 , (even though the correspond- 

ing optimal strategies x ∗ and x e do not coincide). 

The rest of the paper is dedicated to the case in which ∫ ∞ 

0 h (y ) dy = ∞ . 

• We develop an explicit formula to calculate lim 

x e →∞ 

PoA (h, x e ) 

when it exists and show that if h , h ′ are monotonic (where h ′ 
is the derivative of h ), then this limit exists and we arrive at a 

very simple formula to calculate it. 
• If h converges to a constant then lim 

x e →∞ 

PoA (h, x e ) = 2 . 

• If h decreases (increases) monotonically and lim 

x e →∞ 

PoA (h, x e ) ex- 

ists, then lim 

x e →∞ 

PoA (h, x e ) ≤ 2 ( ≥ 2). 

• For any two nonnegative intensity functions h 1 , h 2 s.t. 

h 1 / h 2 → c > 0, if the corresponding lim 

x e →∞ 

PoA (h i , x e ) , i = 1 , 2 , 

exist, then lim 

x e →∞ 

PoA (h 1 , x e ) = lim 

x e →∞ 

PoA (h 2 , x e ) . 

• If h 1 , h 2 , h 
′ 
1 , h 

′ 
2 , are all monotonic and from some point on 

h 1 ≤ h 2 , then the corresponding lim 

x e →∞ 

PoA (h i , x e ) , i = 1 , 2 , ex- 

ist, and lim 

x e →∞ 

PoA (h 1 , x e ) ≤ lim 

x e →∞ 

PoA (h 2 , x e ) . 

All the above results relate to a loss system. In the last section 

of this work, we turn our attention to a system with a queue. We 

prove that in this model, the price of anarchy may be unbounded 

already in the simple case of constant intensity. 

2. Model description 

Consider a single-server queue located at the origin. We make 

the following assumptions: 

1. For all x ≥ 0, customers with distances less than x , arrive to 

the system according to a Poisson process with rate λ(x ) = ∫ x 
0 h (y ) dy, where h ( y ) is a nonnegative “intensity” function 

defined for all y ≥ 0, s.t. 0 < λ( x ) < ∞ for all 0 < x < ∞ . 

2. Customers know their distance from the server. 

3. The queue length is observable. 

4. Customers are risk neutral, maximizing expected net benefit. 

5. The service distribution is general with average rate μ. 

6. The benefit from a service is R . 

7. There is a waiting cost c w 

per unit time while in the system. 

8. There is a traveling cost of c t per unit distance. Traveling is 

instantaneous. (If c t = 0 , we obtain Naor’s model with rate 

λ = 

∫ ∞ 

0 h (y ) dy .) 

9. ν = 

Rμ
c w 

> 1 . 

10. The decision of the customer is whether to join the queue 

or balk. 

3. A loss system 

First, we consider an M/G/1/1 loss system. Namely, it is not pos- 

sible to wait for service. The optimal strategy of a customer located 

at a distance x from the origin, is to enter service if the server is 

idle and R ≥ c w 
μ + c t x. Consequently, the threshold strategy 

x e = 

R − c w 

/μ

c t 
(1) 

is the unique Nash equilibrium strategy. Under this strategy, a cus- 

tomer located at a distance x , enters service iff the server is idle 

and x ≤ x e . 

The utility of a customer entering service from location x is: 

R − c w 

/μ − c t x = c t (x e − x ) . (2) 

Define ρ( x ), the average server utilization when the arrival thresh- 

old is x , as 

ρ(x ) = 

λ(x ) 

μ
= 

1 

μ

∫ x 

0 

h (y ) dy. 

The probability π0 ( x ), of an idle server satisfies: 

π0 (x ) λ(x ) = (1 − π0 (x )) μ. 

This implies that: 

π0 (x ) = 

1 

1 + ρ(x ) 
= 

1 

1 + 

1 
μ

∫ x 
0 h (y ) dy 

. 

By (2) , the expected social benefit per unit of time associated with 

threshold x satisfies 

S(x ) = c t 

∫ x 

0 
( x e − y ) h (y ) π0 (x ) dy = 

c t 
∫ x 

0 (x e − y ) h (y ) dy 

1 + 

1 
μ

∫ x 
0 h (y ) dy 

. (3) 

Let x ∗ be the threshold value that maximizes social welfare. Note 

that x e can be viewed as a parameter that is determined by the 

primitive parameters of the model such that x e = 

Rμ−c w 
c t μ

(see (1) ), 

whereas x ∗ is implicitly defined as a solution of an equation (see 

Eq. (7) below) involving x e . Hence we relate to x ∗ as a function of 

x e . 

Proposition 3.1. For every x e ≥ 0 the optimal threshold strategy x ∗ is 

unique and satisfies, 

x ∗is a continuous strictly increasing function of x e . (4) 

lim 

x e →∞ 

x ∗ = ∞ . (5) 
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