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a b s t r a c t 

Process capability indices (PCIs) are widely used to measure whether an in-control process conforms 

to manufacturing specifications. The normal distribution is assumed in most traditional applications of 

PCIs. Nevertheless, it is not uncommon that some quality characteristics have skewed distributions. In 

such cases, the gamma distribution is an appropriate model and percentile-based PCIs for the gamma 

process have been studied in the literature. In practical applications of PCIs, it is important to select 

an appropriate distribution between the normal and the gamma distributions based on historical data. 

In this study, we first construct a hypothesis test for model discrimination between the normal and the 

gamma distributions. Asymptotic distribution of the test statistic under the gamma process is derived. We 

then consider statistical inference for the percentile-based PCIs under the gamma process. The maximum 

likelihood method is used for point estimation and the method of generalized pivotal quantities is used 

for interval estimation. We demonstrate the proposed methods by a practical example. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The process capability indices (PCIs) are widely used to as- 

sess whether an in-control process meets specification limits de- 

termined from engineering tolerances or customers’ needs. They 

have become the common language for process quality between 

the customers and the suppliers ( Müller & Haase, 2016 ). Numerous 

PCIs, such as the classical C p , C pk , C pm 

and C pmk ( Hsu, Pearn, & Wu, 

2008 ), have been proposed in the literature and industry. Among 

these PCIs, C pk proposed by Boyles (1991) is probably the most fre- 

quently used due to its yield-based nature ( Ryan, 2011 , chap.7). To 

see this, assume that the process characteristic X follows a normal 

distribution N ( μ, σ 2 ) with mean μ and standard deviation σ . Then 

C pk is defined as 

C pk = min 

{ 

USL − μ

3 σ
, 
μ − LSL 

3 σ

} 

, (1) 

where USL and LSL are the upper specification limit and the lower 

specification limit, respectively. For a given value of C pk , the pro- 

cess yield is bounded between 2�(3 C pk ) − 1 and �(3 C pk ), where 

�( · ) is the cumulative distribution function (CDF) of the standard 

normal distribution ( Boyles, 1991 ). Generally, a lower value of C pk 

implies a higher faction of defectives of the process. Therefore, a 

customer would usually specify a minimum value of C pk in the pur- 

chasing contract ( Wu, Aslam, & Jun, 2012 ). 
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It is necessary to emphasize that C pk defined in (1) is mean- 

ingful only if the process characteristic X is normally distributed. 

Otherwise, the bounds of the process yield based on the value of 

C pk could be misleading. In fact, the normality assumption is the 

basis for many commonly-used PCIs (e.g., Wu, 2012; Yeong, Khoo, 

Lee, & Rahim, 2013 ). Although the normal distribution seems ap- 

propriate for some manufacturing systems, it is very likely that a 

process characteristic has a non-normal distribution ( Ryan, 2011 , 

chap.7). For example, many quality characteristics such as di- 

ameter and roundness are often non-normal in manufacturing 

process ( Ryan, 2011 , chap.7). In the procurement process of oil 

and gas companies, the distribution of cycle time data is often 

skewed ( Aldowaisan, Nourelfath, & Hassan, 2015 ). Also, the distri- 

bution of some chemical process such as zinc plating is found far 

from normal ( Pyzdek, 1992 ). In addition, the normality assump- 

tion comes into question in many service and transaction systems 

( Hosseinifard, Abbasi, & Niaki, 2014 ). 

Since the PCIs based on the normality assumption could be 

meaningless ( Ryan, 2011 ), several approaches have been suggested 

to handle the non-normal processes. The most straightforward 

way is to transform the non-normal data such that the trans- 

formed data will be approximately normal (e.g., Somerville & 

Montgomery, 1996 ). However, the transformation methods have 

drawbacks which are inherent in their utilization. First, transforma- 

tion methods are computing-extensive ( Tang & Than, 1999 ). For ex- 

ample, it is necessary to find the optimal parameter in the Box-Cox 

power transformation. Second, the approximate normality of the 

transformed data cannot be always guaranteed, and hence the PCIs 

may not be accurate. Finally, because of the problems associated 

http://dx.doi.org/10.1016/j.ejor.2017.08.024 

0377-2217/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.ejor.2017.08.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.08.024&domain=pdf
mailto:yez@nus.edu.sg
http://dx.doi.org/10.1016/j.ejor.2017.08.024


590 P. CHEN, Z.-S. YE / European Journal of Operational Research 265 (2018) 589–597 

with translating the computed results with regard to the original 

scales, the use of transformed data is often not appealing to prac- 

titioners ( Ryan, 2011 ). On the other hand, a more appropriate way 

is to fit a distribution to the process characteristic data, and use 

percentiles of this distribution to modify classical PCIs ( Clements, 

1989; Rodriguez, 1992 ). For example, a percentile-based C pk is de- 

fined as 

C ∗pk = min 

{ 

USL − X 0 . 5 

X 0 . 9987 − X 0 . 5 

, 
X 0 . 5 − LSL 

X 0 . 5 − X 0 . 0013 

} 

, (2) 

where X β is the 100 βth percentile of the fitted distribution; USL 

and LSL are the upper specification limit and the lower specifica- 

tion limit, respectively. Notice that C ∗
pk 

and C pk coincide for a nor- 

mal process. 

Obviously, an appropriate distribution for the process is the 

premise of the use of the percentile-based PCIs. Among all the 

possible distributions, the gamma distribution is a popular choice 

and it has been extensively used to fit a variety of process char- 

acteristic data (e.g., Hsu et al., 2008; Aldowaisan et al., 2015 ). This 

is because the gamma distribution belongs to the Pearson family, 

which usually provides a reasonable curve flexibility for the pro- 

cess characteristic data ( Rodriguez, 1992; Ryan, 2011 ). The gamma 

distribution itself is a very flexible distribution; it involves the ex- 

ponential distribution and the χ2 distribution as special cases. In 

fact, the gamma distribution governs a wide class of non-normal 

applications in numerous disciplines. For example, it is well known 

that the gamma distribution is a useful lifetime model (e.g., Chen 

& Ye, 2017c; 2017b ). In addition, the gamma distribution plays an 

important role in some genetic research (e.g., Agarwala, Flannick, 

Sunyaev, Consortium, & Altshuler, 2013 ). It is also extensively used 

in environmental science (e.g., Villarini, Seo, Serinaldi, & Krajewski, 

2014; Chen & Ye, 2017a ). 

Given the importance of the PCIs and the wide applications 

of the gamma distribution in non-normal processes, we focus on 

the percentile-based C ∗
pk 

under the gamma processes assumption 

in this study. Evidently, the first important task is to select the 

appropriate distribution between the normal and gamma distri- 

butions. In the literature, a histogram of the process data is often 

plotted for qualitative model discrimination ( Hsu et al., 2008 ). This 

method is simple and useful when the sample size is large and the 

histogram is very skewed or symmetric. Otherwise, it provides lim- 

ited information in selecting the appropriate distribution. There- 

fore, quantitative methods for discrimination between the normal 

and the gamma distributions are needed. In this study, we treat 

this discrimination problem as a hypothesis test problem. Such a 

treatment can be found in Dumonceaux, Antle, 1973 , Kundu and 

Manglick (2004) , and Kim and Yum (2008) , to name a few. In this 

study, the test statistic is constructed as the logarithm of the ra- 

tio of maximized likelihoods (RML) ( Cox, 1961; 1962 ). Under the 

gamma process assumption, the asymptotic distribution of the test 

statistic is provided, which can be used to determine the probabil- 

ity of correct selection easily. A simulation is conducted to assess 

the Type I error and Type II error of the hypothesis under the pro- 

posed decision rule. 

Once the gamma distribution is selected, the next important 

task is to make statistical inference for the percentile-based C ∗
pk 

, 

as the true parameters are unknown in reality. A point estimator 

of C ∗
pk 

is generally easy to obtain by the maximum likelihood (ML) 

method. Nevertheless, a lower confidence limit is of more inter- 

est in practice ( Chang & Wu, 2008; Kotz & Lovelace, 1998; Ryan, 

2011 ). Because C ∗
pk 

is defined as the minimum of two functions, 

its lower confidence limit is quite difficult to obtain even under 

the normal process assumption. In this study, we use the idea of 

generalized confidence interval (GCI) to obtain the lower confi- 

dence limit of C ∗
pk 

for a gamma process. Since it was introduced 

in Weerahandi (1995) , the method of GCI has been successfully 

applied in many statistical inference problems. See Krishnamoorthy 

and Mathew (2004) and Hannig, Iyer, and Patterson (2006) , among 

others. Generally, accurate coverage can be guaranteed based on 

the method of GCI. We first construct generalized pivotal quanti- 

ties (GPQs) for the gamma parameters. The GPQ for C ∗
pk 

can then 

be naturally constructed, based on which the GCI can be readily 

obtained. The performance of the constructed GCI is examined by 

a simulation study. 

The rest of this paper is organized as follows. In Section 2 , a 

hypothesis test for discrimination between the gamma and the 

normal distributions is constructed. We also derive the asymp- 

totic distribution of the test statistic under the gamma process 

assumption. A simulation study is then conducted to assess the 

Type I error and Type II error under the proposed decision rule. 

Section 3 introduces the inference methods for the percentile- 

based C ∗
pk 

. A simulation study verifies the performance of GCI in 

constructing the lower confidence limit of C ∗
pk 

. In Section 4 , a 

practical example is provided to show the usefulness of the pro- 

posed model discrimination method and the inference method. 

Section 5 concludes the paper. 

2. Model discrimination 

Assume the process characteristic X follows either a normal dis- 

tribution or a gamma distribution. Let X 1 , . . . , X n be independent 

and identically distributed (iid) copies of X . We are interested in 

discriminating these two distributions based on the observed pro- 

cess characteristic data x 1 , . . . , x n . The normal distribution N ( μ, σ 2 ) 

with mean μ and standard deviation σ > 0 has a probability den- 

sity function (PDF) as 

f N (x ;μ, σ ) = 

1 √ 

2 πσ
exp 

[
− (x − μ) 2 

2 σ 2 

]
, −∞ < x < ∞ , (3) 

and the gamma distribution GA ( k , θ ) has a PDF as 

f G (x ; k, θ ) = 

θ k 

�(k ) 
x k −1 e −θx , x > 0 , (4) 

where k > 0 is the shape parameter and θ > 0 is the rate parameter. 

It is convenient to formulate this discrimination problem as a hy- 

pothesis test problem with null hypothesis H 0 and the alternative 

H 1 as Dumonceaux, Antle, 1973 

H 0 : X ∼ GA (k, θ ) and H 1 : X ∼ N(μ, σ 2 ) . (5) 

The most commonly used test statistic for such a hypothesis is 

Cox’s statistic ( Cox, 1961; 1962 ), which is the logarithm of the ra- 

tio of the maximum likelihoods under both the null and alternative 

hypotheses. The widespread application of Cox’s test can be found 

in Dumonceaux, Antle, 1973 , Kundu and Manglick (2004) , and Kim 

and Yum (2008) , to name a few. For our problem, the RML is de- 

fined as 

RML = 

max 
∏ n 

i =1 f G (X i ; k, θ ) 

max 
∏ n 

i =1 f N (X i ;μ, σ ) 
= 

∏ n 
i =1 f G (X i ; ˆ k , ˆ θ ) ∏ n 

i =1 f N (X i ; ˆ μ, ˆ σ ) 
. (6) 

Here, ( ̂ k , ˆ θ ) are the ML estimators of ( k , θ ), given as solution to the 

system of equations 

θ = 

k 

X̄ 

and n log (θ ) − nψ(k ) + 

n ∑ 

i =1 

log X i = 0 , (7) 

with X̄ = 

∑ 

i X i /n and ψ(x ) = d log �(x ) /dx . In addition, ( ̂  μ, ˆ σ ) are 

the ML estimators of ( μ, σ ), given by 

ˆ μ = X̄ and ˆ σ 2 = 

1 

n 

n ∑ 

i =1 

(X i − X̄ ) 2 . (8) 
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