
European Journal of Operational Research 254 (2016) 427–442 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Production, Manufacturing and Logistics 

A new time-independent reliability importance measure 

Emanuele Borgonovo 

a , ∗, Hananeh Aliee 

b , Michael Glaß b , Jürgen Teich 

b 

a Department of Decision Sciences, Bocconi University, Milan, Italy 
b Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany 

a r t i c l e i n f o 

Article history: 

Received 24 November 2015 

Accepted 30 March 2016 

Available online 12 April 2016 

Keywords: 

Reliability 

Importance measures 

Mean time to failure 

Time-dependent reliability analysis 

Non-coherent systems 

a b s t r a c t 

Modern digital systems pose new challenges to reliability analysts. Systems may exhibit a non-coherent 

behavior and time becomes an important element of the analysis due to aging effects. Measuring the 

importance of system components in a computationally efficient way becomes essential in system design. 

Herein, we propose a new importance measure for time-independent reliability analysis. The importance 

measure is based on the change in mean time to failure caused by the failure (success) of a component. 

It possesses some attractive properties: i) it is defined for both coherent and non-coherent systems; ii) 

it has an intuitive probabilistic and also geometric interpretation; iii) it is simple to evaluate. It turns 

out that the proposed importance measure leads naturally to a test of time consistency. We illustrate 

the properties with examples of coherent and non-coherent systems. A comparison with the ranking of 

other time-dependent and time-independent reliability importance measures is also offered. The realistic 

application to the reliability analysis of an H.264 video decoder concludes the work. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The constantly shrinking sizes of modern semiconductor de- 

vices enable the design and production of ever smaller, more ef- 

ficient, and also more economical computing systems. However, 

these small device structures are increasingly susceptible to envi- 

ronmental effects like cosmic rays, manufacturing tolerances, and 

in particular aging effects such as negative/positive bias temper- 

ature instability or electromigration. Consequently, reliability is 

nowadays not only a prime design objective in safety-critical fields 

of application, but plays a crucial role in the design of all kinds 

of computing systems, and particularly in the design of embed- 

ded systems (see Borkar, 2005 ). However, while for safety-critical 

systems regulatory requirements may already justify the additional 

costs needed to achieve the desired level of safety, for systems 

typical of the embedded domain we need to look for highly cost- 

efficient techniques to compensate for the outlined increasing un- 

reliability of system components. 

Given these trade-offs, reliability importance measures have 

traditionally helped designers in redundancy allocation. The com- 

plexity of today’s systems makes manual design often prohibitive, 

and calls for automatic approaches to explore the design spaces of 

possible system implementations/configurations. Recently, design 
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space exploration techniques have shown that also automatic op- 

timization approaches can benefit from importance measures (see 

Aliee, Glaß, Khosravi, & Teich, 2014; Khosravi, Reimann, Glaß, & Te- 

ich, 2014 ). Given the complexity of the systems involved, impor- 

tance measure analysis needs to be carried out in a computation- 

ally efficient way. Aging effects are increasingly affecting compo- 

nents performance introducing the need of modeling system reli- 

ability in a time-dependent fashion. In order to apply most of the 

existing reliability importance measures to this scenario, the de- 

signer has to chose a certain point in time (e.g., the mission time 

of the system) at which the importance of components is evalu- 

ated. This constraint imposes not only the need for careful man- 

ual interaction—which we aim to avoid—but, even more, the bur- 

den of choosing the right point in time. In fact, the importance 

of components may significantly change over time, if we employ 

time-dependent importance measures. As a remedy, we investigate 

and address time-independent reliability importance measures in 

this work. However, most time-independent reliability importance 

measures have been defined for coherent systems. 

Now, because embedded systems typically share constrained 

resources between different applications, they may show non- 

coherent behavior. For example, the activation (or repair) of re- 

dundant software tasks on a processor may delay the computa- 

tion causing a certain deadline to be missed and then inducing a 

system failure. Consequently, a time-independent reliability impor- 

tance measure is required that can be applied to coherent as well 

as non-coherent systems and whose computation is numerically 
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efficient. Since we seek for an importance measure of seamless ap- 

plicability, we introduce an intuitive concept, that is, we measure 

the importance of a component as the magnitude of the difference 

between the conditional and unconditional system Mean Time To 

Failures (MTTFs) given that the component has failed. Both values 

are readily available to the system designer via classic reliability 

analysis approaches, such as binary decision diagrams or event- 

fault trees. Both values, also, are well defined for both coherent 

and non-coherent systems. We then show that under the condition 

of time consistency (a special case of stochastic dominance which 

we are to discuss later on), the importance measure coincides with 

the Wasserstein –Kantorovich distance between the unconditional 

and conditional reliability functions. The fact that this is the area 

enclosed between the two distribution functions provides the im- 

portance measure also with an intuitive geometric interpretation. 

Finally, because aging effects may be accelerated by common dis- 

ruptive agents such as environmental heat, components may no 

longer be considered independent but may exhibit dependent fail- 

ures. In this respect, the proposed importance measure does not 

require that component failures are independent. 

Aside from discussing the new importance measure, we shall 

present a brief excursion into the concept of time consistency, de- 

fined as a second-order stochastic dominance condition. We show 

that time consistency can be possessed by both a coherent or 

non-coherent system. Such concept is therefore independent of the 

structure of the system. 

While the previous discussion concerns component failure, we 

also consider the twin importance measure based on component 

success. The importance measure quantifies the impact of mak- 

ing the component perfectly reliable on the system MTTF and pos- 

sesses similar properties to the importance measure for failures. 

We illustrate the new importance measure(s) and the concept 

of time consistency with alternative examples and conclude the 

work with a realistic digital system application (an H.264 video de- 

coder) from the domain of automatic embedded system design. 

The reminder of the work is organized as follows. Section 2 dis- 

cusses related work on reliability importance measures. The novel 

time-independent reliability importance measure is introduced in 

Section 3 . The concept of time consistency and the geometric 

interpretation of the new importance measure are discussed in 

Section 4 . Section 5 illustrates several examples of coherent and 

non-coherent systems. Section 6 presents a realistic application. 

Section 7 Presents a comparison of time dependent versus time 

independent importance analysis. Section 8 offers conclusions and 

future research perspectives. 

2. A review of time-dependent and time-independent 

importance m easures 

In this section, we offer an overview of the literature relevant to 

our work. Because our focus is on importance measures, they will 

be investigated in greater detail in this section. But, relevant items 

to our work are also time-dependent reliability analysis and sys- 

tem modeling. The literature on these subjects is vast and we can 

only offer a cursory review. As for time-dependent reliability anal- 

ysis, we recall the works of Barlow and Proschan (1975b) , Rackwitz 

(2001) , Boudali and Bechta Dugan (2006) and Prescott, Remenyte- 

Prescott, Reed, Andrews, and Downes (2009) . As for system mod- 

eling, we recall the works of Epstein and Rauzy (2005) , Wang and 

Trivedi (2005) and, recently, Dutuit and Rauzy (2015) . 

We now come to importance measures, to which the longer 

part of this review section is dedicated. Reliability importance 

measures are analytical tools developed to quantitatively appraise 

the contribution of a component to system reliability. Since the 

seminal work of Birnbaum (1969) , a variety of reliability impor- 

tance measures have been introduced, to cope with alternative 

sensitivity questions that emerge in alternative applications. The 

works of Aven and Norkland (2010) , Kuo and Zhu (2012b) , Vasseur 

and Llory (1999) , and the monograph by Kuo and Zhu (2012a) offer 

broad overviews. 

Of interest is the state of a given system at time t . The sys- 

tem is made of n elements (components or basic events), whose 

states determine the end-state of the system. In the remainder, we 

shall use the term basic event or component exchangeably. This 

end state is called top event. Thus, we let: 

ϕ i = 

{
1 component i has failed 

0 component i is working correctly 
(1) 

denote the state variable of a generic basic event, and ϕ = 

(ϕ 1 , ϕ 2 , ..., ϕ N ) is then the basic event state vector. The generic 

configuration ϕ can result in the system to be working or failed. 

We denote the top-event indicator variable as � , with � = 1 de- 

noting system failure. 

The relationship that binds the state vector ϕ to the system 

state variable � is called structure function. Technically, �( ϕ) can 

be regarded as a Boolean function or as a state function ( Crama & 

Hammer, 2011 ). We will regard it as a Boolean function and use 

the notation of Boolean logics hereafter. A state ϕ is an implicant 

if it implies �(ϕ) = 1 . It is a prime implicant if it does not contain 

any other implicant. In the logic of failure/success, prime impli- 

cants are minimal cut/path sets, respectively. In reliability studies, 

of interest for a decision-maker is the probability that the system 

performs (or does not perform) its mission over the assigned time 

horizon. For simplicity, assume that the system is not repairable. 

Such probability is called the reliability of the system at time t , 

and is denoted as: 

R (t) = Pr (� = 0 ; t) (2) 

The unreliability of the system is denoted here as 

U(t) = Pr (� = 1 ; t) = 1 − Pr (� = 0 ; t) = 1 − R (t) . (3) 

A central intuition for the definition of several reliability impor- 

tance measures is the notion of criticality. A component is said to 

be critical if the system is in such a state that: 

�(1 i, ϕ ∼i ) − �(0 i, ϕ ∼i ) = 1 , (4) 

that is, a switch from working to failed of component i provokes 

the occurrence of the top event. Here, ϕ ∼i is the basic event state 

vector of the system without component i . Then, the Birnbaum im- 

portance measure is defined as: 

I B = Pr [�(1 i, ϕ ∼i ) − �(0 i, ϕ ∼i )] = E [�(1 i, ϕ ∼i ) − �(0 i, ϕ ∼i )] . (5) 

Birnbaum (1969) shows that, if: a) the system is coherent, and b) 

we assume that basic event occurrences are probabilistically inde- 

pendent, then 

I B = 

∂U 

∂F i 
(6) 

where F i = Pr (ϕ i = 1) is the probability that basic event i realizes. 

By Eq. (6) , the Birnbaum importance of a basic event is time de- 

pendent, because the system unreliability U is time dependent. 

The definition in Eq. (6) holds for coherent systems. Andrews and 

Beeson (2003) propose an extension of this definition for non- 

coherent systems. 

Barlow and Proschan (1975a) introduce a modification of 

the Birnbaum importance which leads to the well-known time- 

independent Barlow –Proschan importance measure: 

I BP 
i = 

∫ ∞ 

0 

Pr [�(1 i, ϕ ∼i ) − �(0 i, ϕ ∼i )] dF i (t) , (7) 

where F i ( t ) is the cumulative distribution function of the failure 

time of component i . A notable probabilistic interpretation of the 
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