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The majority of quasi-analytic pricing methods for American options are efficient near maturity but are 

prone to larger errors when time-to-maturity increases. We introduce a new methodology to increase 

the accuracy of almost any existing quasi-analytic approach in pricing long-maturity American options. 

The new methodology, called the “extension-method”, relies on an approximation of the optimal exercise 

price near the beginning of the contract combined with existing pricing approaches so that the maturity 

range for which small errors are attainable is extended. Our method retains the quasi-analytic nature of 

the methods it improves. Generic quasi-analytic formulae for the price of an American put as well as for 

its hedging parameter are derived. Our scenarios-based numerical study indicates that our method con- 

siderably improves both the pricing and the hedging performance of a number of established approaches 

for a wide range of maturities. The superiority of this approach is illustrated with real financial data by 

considering S&P 100 TM LEAPS ® options traded from January 2008 to May 2015. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The problem of pricing American options has been widely ex- 

amined in the last 40 years. The main challenge is due to the fact 

that the American optionality requires the selection of the opti- 

mal exercise price (henceforth, OEP) together with the valuation of 

the contingent claim. Several types of approximation approaches 

have been proposed in the literature to solve this problem. Within 

the broad class of approximation methods, in this paper we fo- 

cus on the quasi-analytic methods consisting of analytic formulae 

that require at most a reasonably small number of numerical so- 

lutions of integral equations. The first method in this subclass is 

described in Geske and Johnson (1984) , who used a portfolio of 

compound European options to replicate the early exercise feature 

of American options. Bunch and Johnson (1992) improved the effi- 

ciency of the Geske–Johnson method by optimally locating the ex- 

ercise points and showed that most of the time only two – and 

in a few cases for deep-in-the-money options only three – early- 

exercise dates including maturity are required. The quadratic ap- 

proximation in Barone-Adesi and Whaley (1987) gives an approx- 

imated solution of the Black–Scholes partial differential equation 

in closed form. This method, extremely fast and accurate for very 
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short and very long maturities, has been refined by Ju and Zhong 

(1999) including a second-order extension that improves accuracy 

for middle-term maturities. Subsequently, Li (2010a) further re- 

fined the Ju-Zhong method by a more careful use of the smooth 

pasting condition for American options. Li’s method results in a 

more precise estimation of the OEP. However, the approximations 

in Barone-Adesi and Whaley (1987); Ju and Zhong (1999) and Li 

(2010a) have the limitation that the pricing error cannot be con- 

trolled, that is, these methods are not convergent to the “true”

price because they cannot be made more precise by including ad- 

ditional terms. Ju (1998) proposed a piecewise exponential func- 

tion for the OEP. 

An important step in the American option pricing literature 

was the result of Kim (1990) and Carr, Jarrow, and Myneni (1992) , 

who derived an implicit-form integral equation for the OEP. Hence, 

the pricing of American options can be reduced to identifying the 

OEP efficiently. Ibáñez (2003) modified Kim’s method to guarantee 

that the prices monotonically converge to the true prices when the 

number of time steps increases. Kim, Jang, and Kim (2013) , based 

on an idea from Little, Pant, and Hou (20 0 0) , transformed the 

integral equation into a numerical functional form with respect 

to the optimal exercise boundary, and subsequently constructed 

an iterative method to calculate the boundary as a fixed point 

of the functional. Recently, Broadie and Detemple (1996) , Laprise, 

Fu, Marcus, Lim, and Zhang (2006) and Chung, Hung, and Wang 

(2010) proposed tight quasi-analytic bounds for American options. 
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Fig. 1. Example of extension method mechanism. 

Note: The optimal exercise prices of two American put options are considered in the figure. The two options are written on the same underlying asset with σ = 20 percent, 

δ = 5 percent, r = 8 percent and K = 100 . One option has maturity t 1 = 1 year and the other T = 2 . 5 years. The continuous line represents the optimal exercise price of the 

option with maturity T and the dash-dot lines represent the optimal exercise of the option with maturity t 1 . In particular, the left-most dash-dot line is the ‘original’ function 

and the other is its translation over the continuous line to show they coincide in the interval [ t x , T ] where t x = t 0 + (T − t 1 ) = 1 . 5 years represents the size of the translation. 

The OEPs are calculated by the integral method in Kim (1990) . 

Additionally, Chockalingam and Muthuraman (2015) employed the 

approximate moving boundaries method which iteratively finds an 

approximation of the OEP and Chockalingam and Feng (2015) ex- 

tended on Ibáñez and Paraskevopoulos (2011) to investigate the 

cost of a suboptimal OEP. 

Almost all the methods may produce large pricing errors for 

long-maturity options since the convergence to the “true” price de- 

pends on the decrease of the size of the time-step (i.e. early exer- 

cise dates) or, equivalently, on the increase in the number of it- 

erations. However, an increase in the number of iterations makes 

these methods rapidly inefficient. In Table 1 – see rows ‘Std’, which 

contain the results for the ‘standard’ versus rows ‘Ext’, the ‘ex- 

tended’ version of the methods – the performance of several pric- 

ing methods is reported with respect to the mean absolute per- 

centage error, MAPE, for maturities ranging from less than six 

months to between four and a half and five years. All the meth- 

ods considered were selected because they perform very well for 

short maturities as reported by several other studies. 1 

In this paper, we propose a quasi-analytic approach that aims to 

improve the performance of existing methods in pricing and hedg- 

ing long-maturity options. The new approach, which we call the 

“extension method”, relies on the fact that the OEP is independent 

of the current underlying asset price. The state space is divided 

into the continuation and the exercise regions, which are precisely 

separated by the OEP. In the following, in a novel way each op- 

tion’s time-to-maturity is divided into two components according 

to the closeness to the maturity date. We use a constant approx- 

imation function 

2 for the first part of the option life and existing 

pricing methods (with their associated estimation for the OEPs) for 

the second part (see Fig. 1 ). The division of time to maturity and 

OEP profile is marked by a time-point t x . The value of t x is de- 

termined by performing several empirical trials and, although it is 

dependent on the quasi-method, our results in Fig. 2 suggest that 

t x / T is around 0.5, although for Ju and Zhong (1999) t x /T = 0 . 3 and 

for Ibáñez (2003) t x /T = 0 . 35 . 

Under the proposed extension methodology, the option price is 

equal to the sum of the expected discounted-payoff from the first 

1 The comparison is done by using the studies reported in Table 1 . 
2 The fact that the OEP becomes constant for long maturities helps with the it- 

erative methods as well; since the boundary at time t n is a good starting point for 

the boundary at t n −1 . We thank an anonymous referee for making this point. 

part of the option life and the expected discounted-payoff from the 

second part, conditioned on not exercising the option in the first 

part. We derive formulae for the American put price and also for 

the corresponding hedging parameters. 3 We also prove the con- 

vergence of the American put option price obtained with our pro- 

posed extension method to the perpetual put price when maturity 

increases infinitely. An extensive scenario-based study is carried- 

out showing that, when compared with established quasi-analytic 

methods, the new method leads to sizeable improvements in pric- 

ing and hedging American options, especially for longer maturities 

where existing methods generally fail. Then, we show that the ex- 

tension method also improves the existing methodologies when 

applied to real data, LEAPS ® options on the S&P 100 TM index be- 

tween 2 January 2008 and 29 May 2015. 

The remainder of the paper is organized as follows. 

Section 2 describes the modelling framework. The main theo- 

retical results are discussed in Section 3 where the closed-form 

pricing and hedging formulae are derived. Section 4 is a numerical 

scenarios-based study of the pricing and hedging performance of 

the extension method. Section 5 reports the pricing performance 

over the S&P 100 TM LEAPS ® options and Section 6 concludes. 

2. Modelling framework 

All modelling referring to American option pricing in this pa- 

per is done assuming that, under the risk-neutral measure Q , the 

dynamics of the underlying stock S is given by: 

d S t = (r − δ) S t d t + σ S t d W t , t ≥ t 0 (1) 

where r is the risk-free rate and δ is the annual dividend yield 

with continuous compounding. For simplicity, the difference r − δ
is denoted henceforth by b and { W t } t≥t 0 refers to a Wiener process 

under the martingale measure Q . 

Without any loss of generality, we only consider the case of 

American put options. 4 The OEP of the American put option with 

maturity T and strike price K is a continuous function, see Jacka 

(1991) , non-decreasing with respect to time, with limiting value for 

3 The formulae are given in the on-line appendix. 
4 All the formulae and propositions can be equivalently derived for American call 

options. Additionally, one can price and hedge call options by using the put-call 

symmetry in McDonald and Schroder (1998) . 
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