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a b s t r a c t 

This paper deals with empirical computation of Aumann–Shapley cost shares for joint production. We 

show that if one uses a mathematical programing approach with its non-parametric estimation of the 

cost function there may be observations in the data set for which we have multiple Aumann–Shapley 

prices. We suggest to overcome such problems by using lexicographic goal programing techniques. More- 

over, cost allocation based on the cost function is unable to account for differences between efficient 

and actual cost. We suggest to employ the notion of rational inefficiency in order to supply a set of as- 

sumptions concerning firm behavior. These assumptions enable us to connect inefficient with efficient 

production and thereby provide consistent ways of allocating the costs arising from inefficiency. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Aumann–Shapley (A–S) cost allocation, often interpreted as 

generalized average cost sharing, is a well-known cost allocation 

method designed for regulation of multi-product natural monopo- 

lies as well as for internal cost accounting and decentralized de- 

cision making in organizations, see e.g., Spulber (1989) , Banker 

(1999) , Mirman, Tauman, and Zang (1985a) . In short, the idea is 

to determine a set of unit prices for each output, i.e., the Aumann–

Shapley (A–S) prices, and use these for the allocation of joint costs. 

The theoretical literature has shown that the A–S method (and 

A–S prices) possesses a number of desirable properties, see e.g., 

Billera and Heath (1982) , Mirman and Tauman (1982) , Young 

(1985) , Mirman, Tauman, and Zang (1985b) , and it has essentially 

been the unanimous recommendation of economists for decades 

when sharing the costs of joint production, see e.g., Friedman and 

Moulin (1999) . Yet, despite its sound theoretical foundation there 

has been relatively few empirical applications. The reason seems at 

least twofold: 

1. It requires an empirical estimation of the cost function that en- 

ables computation of all relevant A–S prices. 

2. In practice firms may not produce at efficient production cost. 

Hence, an allocation based solely on the cost function will not 

account for differences between efficient and actual costs. 

In the present paper we examine how to cope with both these 

issues. While there has been previous papers dealing with compu- 
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tation of A–S prices for given empirical cost functions we believe 

the second issue, concerning inefficient production, has been ig- 

nored and we offer a completely new approach here. 

We follow up on papers by Samet, Tauman, and Zang (1984) , 

and Hougaard and Tind (2009) and consider empirical estima- 

tion based on convex envelopment of observed cost-output data 

as in the celebrated Data Envelopment Analysis (DEA) approach of 

Charnes, Cooper, and Rhodes (1978) . 1 The resulting piecewise lin- 

ear cost function enables a relatively simple computation of A–S 

prices for large parts of the output space: The A–S prices associ- 

ated with a given output vector are simply found as the weighted 

sum of gradients of the linear facets of the estimated cost func- 

tion along a radial contraction path of the observed output vector, 

where the weights are proportional to the length of the projected 

line segments. For every data point this can be computed using 

parametric linear programing. 

However, for certain data points, and in particular for the ob- 

served productions that help span the empirical cost function, the 

cost function will in most cases be piecewise continuous differ- 

entiable along the radial contraction path and hence there may 

be multiple A–S prices for the same observation caused by lack 

of continuous differentiability on subintervals along this path. For 

reasons of transparency and simplicity, we suggest to overcome 

this problem by using a lexicographic goal programing approach 

with a predefined ordering of outputs to determine which outputs 

should be allocated most costs. Such orderings may, for instance, 

1 For a recent general DEA reference, see e.g., Bogetoft and Otto (2010) . 
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be the result of a managerial prioritization and will provide unique 

A–S prices for all observations. 2 

Our approach, however, does not exclude the possibility of hav- 

ing zero A–S prices for some units (when these are referring to 

exterior facets). To solve this problem (as well as excluding the 

possibility of infinite A–S prices), one can use the “extended facet”

approach in Olesen and Petersen (1996 , 2003) . This ensures well 

defined rates of substitution on the boundary of the convex en- 

velopment of the data points, but in general this approach lacks 

operationability. 

When it comes to inefficient production it seems that no pre- 

vious papers have considered the consequences in relation to A–S 

pricing. Yet, countless empirical studies have shown that observed 

production data are often associated with considerable levels of 

technical inefficiency, see e.g., Bogetoft and Otto (2010) . 

To deal with inefficient production in the context of A–S cost 

allocation, we propose to invoke the rational inefficiency paradigm 

introduced in Bogetoft and Hougaard (2003) and further analyzed 

in Asmild, Bogetoft, and Hougaard (2009 , 2013) . This allows us to 

formulate specific assumptions concerning the behavior of ineffi- 

cient firms, which in turn enables us to associate an efficient pro- 

duction with each inefficient observation in the sample. It is worth 

emphasizing that, as such, our suggested approach and associated 

results are independent of the way we estimate the cost function 

(although we are using non-parametric estimation for our empiri- 

cal illustration). 

In particular, firms can introduce inefficiency on either the cost 

(input) side or the production (output) side. Considering cost inef- 

ficiency we assume that the inefficient firm has revealed a constant 

fraction of overspending by its actual production choice. Thus, A–S 

prices connected with the cost efficient production can be scaled 

up with a radial cost efficiency index in order to obtain full cost 

allocation. We show that this approach is tantamount to viewing 

inefficiency as a fixed cost and to sharing this fixed cost in propor- 

tion to the A–S prices. 

Looking at the output side we assume that firms introduce in- 

efficiency by consuming outputs directly on the job. For example, 

some units of a given output may be produced in inferior quality 

and we can regard this as a kind of internal “consumption”, which 

should not distort the estimation of A–S prices. A rationally ineffi- 

cient firm would choose its actual (unobserved) production so as to 

maximize potential revenue given output prices and its observed 

cost. When we observe the actual output level lower than that it 

is because the firm has consumed the difference (slack) itself. We 

shall therefore argue that it is the allocatively efficient output com- 

bination that carries the cost and allocate costs accordingly using 

the A–S prices related to the allocatively efficient production. 

We illustrate our approach using a data set concerning Danish 

waterworks. We use the same 2011 data that the regulator, the 

Water Division of the Danish Competition and Consumer Author- 

ity, used in their first regulatory cost benchmarking model, and we 

show how cost shares can be computed using our suggested A–S 

approach in case of a non-parametric estimation of the cost func- 

tion. 

The rest of the paper is organized as follows: Section 2 defines 

the standard Aumann–Shapley cost allocation rule for continuously 

differentiable cost functions. Section 3 introduces the convex en- 

velopment approach to the estimation of the empirical cost func- 

tion. We discuss how to calculate A–S prices from the estimated 

cost function and suggest how to deal with the lack of well defined 

A–S prices for all production units in Section 4 . Section 5 deals 

with inefficient production in the context of A–S cost allocation 

2 A far less operational approach would be to determine all facets involved (for 

data point in question) and define the associated A–S price as the (weighted) aver- 

age of the gradients of these facets. 

building on the rational inefficiency paradigm. The illustrative ap- 

plication to data on Danish waterworks is presented in Section 6 , 

and Section 7 contains final remarks. 

2. Aumann–Shapley cost allocation 

Consider a joint production process resulting in n different out- 

puts. Let q ∈ R 

n 
+ be the (non-negative) output vector where q i is 

the level of output i . The cost of producing any vector q is given 

by a non-decreasing cost function C : R 

n + → R . Initially, we assume 

that C(0) = 0 , i.e., there are no fixed costs. 

Let ( q , C ) denote a cost allocation problem and let φ be a cost 

allocation rule. The cost allocation rule specifies a unique vector of 

cost shares x = (x 1 , . . . , x n ) = φ(q, C) for each output vector q and 

cost function C . The cost shares satisfy budget-balance, i.e. 

n ∑ 

i =1 

x i = C(q ) 

where x i is the cost share allocated to output i . 

In particular, consider the class of continuously differentiable 

cost functions and let ∂ i C(q ) = ∂ C(q ) /∂ q i be the partial derivative 

of C at q with respect to the i th argument. 

Following Aumann and Shapley (1974) , we define the Aumann–

Shapley rule (A–S-rule) φAS as 

φAS 
i (q, C) = 

∫ q i 

0 

∂ i C 
(

t 

q i 
q 

)
dt = q i 

∫ 1 

0 

∂ i C(tq ) dt for all i = 1 , . . . , n. 

(1) 

It can be shown that this allocation is budget balanced, i.e., ∑ 

i ∈ N φAS 
i 

(q, C) = C(q ) . 

Also, 

p AS 
i = 

∫ 1 

0 

∂ i C(tq ) dt 

can be seen as the unit cost of output i . This is known as the 

Aumann–Shapley price (A–S price) of output i . As such, the A–S 

cost shares, x AS 
i 

, are given by 

x AS 
i = p AS 

i q i (2) 

for all outputs i = 1 , . . . , n. 

The A–S rule can be seen as one (of several) possible exten- 

sions of average cost sharing to the multiple product case, see e.g. 

Hougaard (2009) . Axiomatic characterizations are provided (inde- 

pendently) in Billera and Heath (1982) and Mirman and Tauman 

(1982) . Following the latter, we here shortly recall the axioms char- 

acterizing A–S pricing p AS ( C , q ): 

• (Rescaling) For some rescaling q �→ q̄ = (λ1 q 1 , . . . , λn q n ) , let 

G (q ) = C( ̄q ) . Then, for all i = 1 , . . . , n, p i (G, q ) = λi p i (C, q̄ ) . 
• (Consistency) Let C(q ) = G ( 

∑ n 
i =1 q i ) . Then, for all i = 1 , . . . , n, 

p i (C, q ) = p i (G, 
∑ n 

i =1 q i ) . 
• (Additivity) Let C(q ) = G (q ) + H(q ) . Then p(C, q ) = p(G, q ) + 

p(H, q ) . 
• (Positivity) Let C be non-decreasing at each q ′ ≤ q . Then p ( C , q ) 

≥ 0. 

Early examples of application can be found in Billera, Heath, 

and Raanan (1978) and Samet et al. (1984) . More recent appli- 

cations include Castano-Pardo and Garcia (1995) , Haviv (2001) , 

Tsanakas and Barnett (2003) and Bjørndal, Jörnsten, Koster, and 

Delfman (2005) . 

Example 1. Consider the simple case where the cost function is 

homogeneous of degree k , i.e., C(tq ) = t k C(q ) for t ∈ [0, 1]. Here it 

is clear that for all i ∈ N , the A–S prices become 

p AS 
i = ∂ i C(q ) 

∫ 1 

0 

t k −1 dt = p MC 
i 

1 

k 
, 
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