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a b s t r a c t 

The inventory-staggering problem is a multi-item inventory problem in which replenishment cycles are 

scheduled or offset in order to minimize the maximum inventory level over a given planning horizon. 

We incorporate symmetry-breaking constraints in a mixed-integer programming model to determine op- 

timal and near-optimal solutions. Local-search heuristics and evolutionary polishing heuristics are also 

presented to achieve effective and efficient solutions. We examine extensions of the problem that include 

a continuous-time framework as well as the effect of stochastic demand. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Much of the inventory-research literature assumes the replen- 

ishment and stocking of an item is independent of that for other 

items. This may be a valid assumption if there are no restrictions 

on storage space, capital requirements, transportation capacities, or 

any other required resources. In the presence of such constraints, 

however, determining the inventory policies of each item indepen- 

dently may call for replenishment quantities that ultimately violate 

these restrictions. Thus, the coordinated replenishment of multiple 

items becomes a practical necessity. 

A traditional textbook approach to the deterministic, multi-item 

problem involves the use of Lagrange multipliers within the eco- 

nomic order quantity (EOQ) calculation (see, for example, Hadley 

& Whitin, 1963 ). This effectively increases the holding costs to re- 

duce the resulting order quantities, thus satisfying the resource re- 

striction ( Nahmias & Olsen, 2015 ). However, a shortcoming of the 

Lagrangian approach is that it effectively assumes all items will 

be received simultaneously at some point in the planning horizon; 

consequentially, the maximum resource requirement will occur at 

that time. 

Another prevalent approach to the constrained, multi-item 

problem is to stagger, or offset, the orders in order to avoid the 

simultaneous receipt of orders as much as possible (see De Schri- 

jver, Aghezzaf, & Vanmaele, 2013 for a recent review of constrained 

multi-item inventory systems). Much of the early research in this 

area assumes that all items have a common order cycle length 
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(e.g., Homer, 1966, Page & Paul, 1976, Rosenblatt & Rothblum, 1990, 

Zoller, 1977 ). Other research has focused on developing bounds for 

the problem (e.g., Gallego, Queyranne, & Simchi-Levi, 1996, Hum, 

Sharafali, & Teo„ 2005 ). Gallego, Shaw, and Simchi-Levi (1992) have 

shown the offsetting problem to be strongly NP-complete. 

Research on the offsetting problem without restricting the or- 

der cycle lengths has been considerably less prevalent. Murthy, 

Benton, and Rubin (2003) considered the basic offsetting prob- 

lem of minimizing the maximum resource requirements for situ- 

ations in which the order cycle lengths of the items are known 

and are allowed to be independent of one another. They provided 

an optimal offsetting procedure for two items and a heuristic pro- 

cedure for offsetting more than two items. Subsequent studies 

have focused on the development of heuristics to solve this prob- 

lem, including genetic algorithms ( Moon, Cha, & Kim, 2008, Yao 

& Chu, 2008 ), a smoothing procedure utilizing a Boltzmann func- 

tion ( Yao, Chu, & Lin, 2008 ), and local-search procedures ( Croot 

& Huang, 2013 ). Boctor (2010) presented a mathematical formula- 

tion to solve small instances of the problem—up to 20 items—with 

commercially-available software and developed a hybrid heuristic 

and a simulated-annealing algorithm to solve larger instances of 

the problem. 

The purpose of this research is twofold. First, we generalize 

the existing literature by utilizing symmetry reduction to reduce 

the problem size in order to optimally solve larger problems 

than previously achieved and by proposing heuristics that we 

show to provide better solutions than previous methods. Then, 

we extend the current research by analyzing continuous-based 

replenishment systems as well as stochastic demand. In the next 

section, we present the problem definition and the mixed-integer 

programming formulation of Boctor (2010) as well as a descrip- 

tion of the data used to analyze our results. We then discuss the 
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symmetry-reduction approach in Section 3 and provide experimen- 

tal results quantifying the effect on computational requirements. 

Two types of heuristics are utilized, and their performance is 

analyzed in Section 4 . Further investigations into the offsetting 

problem are presented in Section 5 , including a continuous-time 

model and the effect of stochastic demand. Finally, we present the 

conclusions of our research. 

2. Problem description 

Consider the situation in which there are a number of items 

( i = 1 , . . . . . . , N) to be stocked, each with a deterministic demand 

rate, d i , and a deterministic order cycle, k i (and, hence, a known or- 

der quantity, q i = d i k i ). The demand rates of the items are assumed 

to be independent of one another, as are the order cycle lengths. 

Lead time is also assumed to be deterministic—as noted by Murthy 

et al. (2003) , we can set it to zero without loss of generality—with 

instantaneous replenishment. The planning horizon spans T time 

periods ( t = 0 , . . . . . . , T − 1 ). Even with an infinite time horizon (as 

T → ∞ ), the length of the planning horizon would need to be no 

more than the least common multiple of the order cycle lengths 

(the cycles then repeat); from a practical perspective, though, the 

planning horizon for which the parameters are known and con- 

stant (demand, order cycles, product mix, etc.) may be somewhat 

less. Finally, the objective is to identify when each item should be 

replenished in order to minimize the maximum resource require- 

ment (for ease of exposition, we will present the problem in terms 

of the maximum inventory level for the remainder of the analysis), 

S, at any time during the planning horizon. 

Boctor (2010) presented a mixed-integer program for this prob- 

lem, in which the decision variables, X i j , are defined to be equal to 

1 if item i is first replenished at time j ( j = 0 , . . . . . . , k i − 1 ). The 

mixed-integer programming formulation is then: 

Minimize S (1) 

Sub ject to : 

k i −1 ∑ 

j=0 

X i j = 1 for i = 1 , . . . , N (2) 

N ∑ 

i =1 

k i −1 ∑ 

j=0 

s i jt X i j ≤ S for t = 0 , . . . , T − 1 (3) 

S ≥ 0 , X i j ∈ { 0 , 1 } for i = 1 , . . . , N j = 0 , . . . , k i − 1 (4) 

where s i jt = q i − d i τi jt is the inventory level of item i at time t , 

and τi jt = ( k i + t − j ) mod ( k i ) is the time elapsed since the most 

recent replenishment. This formulation requires 
∑ 

i k i binary vari- 

ables, one continuous variable, and N + T constraints. For exam- 

ple, the MIP formulation for the 9-item problem of Murthy et al. 

(2003) would require 73 binary variables. 

To evaluate the effect of symmetry reduction and the quality 

of the heuristics developed, data sets ranging from 9 to 500 items 

are used in the following sections. The 9-item example is taken di- 

rectly from Murthy et al. (2003) . Demand rates for 20-, 50-, and 

200-item instances were generated using the approach of Boctor 

(2010) in which demand is uniformly distributed between 5 and 

30 units per period. For the larger data sets, Boctor (2010) gener- 

ated demand rates for each item from one of three ranges: uni- 

formly distributed from 5 to 30 units, from 50 to 100 units, and 

from 150 to 200 units; we do this for 10 0-, 20 0-, and 50 0-item in- 

stances. We generated order cycle lengths randomly selected from 

the divisors of 360 between 2 and 20—to maintain a planning hori- 

zon of 360—for all sizes of problems; to evaluate the heuristics, we 

also follow the approach of Boctor (2010) for 200-item instances 

in which the order cycle length is uniformly distributed between 2 

and 12 (as this provides a planning horizon of 27,720, it is not used 

Table 1 

Summary of data used in analyses. 

Number of items Demand rate Order cycle length 

U(5, 30), U(5, 30) Divisors U(2, 12) 

U(50, 100), of 360 

U(150, 200) 

9 † 

20 
√ √ 

50 
√ √ 

100 
√ √ 

200 a 
√ √ 

200 b 
√ √ 

200 c 
√ √ 

200 d 
√ √ 

500 
√ √ 

Note: † Data taken from Murthy et al. (2003) . 

in our optimization experimentation). Table 1 provides a summary 

of the data used in the subsequent analyses. 

3. Optimization through symmetry reduction 

As is typical with many binary programs, the solution time re- 

quired to identify an optimal solution increases rapidly with re- 

spect to the problem size. The mixed-integer programming formu- 

lation presented above requires K = 

∑ 

i k i binary variables; thus, 

there will be 2 K solutions, of which 

∏ 

i k i are feasible. Lower 

bounds can be developed for the staggering problem (i.e., the 

greater of 
∑ 

i q i / 2 or max i { q i } ), but the branch-and-bound proce- 

dure quickly identifies superior bounds. 

Thus, we turn our attention to reducing the problem size 

through symmetry reduction, as branch-and-bound procedures 

can become quite inefficient when the problem contains many 

symmetries ( Bosch & Trick, 2005 ). The offsetting problem un- 

der consideration is highly symmetric. For example, an optimal 

solution to the Murthy et al. (2003) 9-item problem is such 

that the time of the first replenishment for each item is at 

time j = [ 0 , 0 , 1 , 3 , 2 , 2 , 0 , 9 , 1 ] . An alternate optimal solution 

would simply advance all of these times by one period; that is, 

j = [ 1 , 1 , 2 , 4 , 3 , 3 , 1 , 10 , 0 ] (see Proposition 2 of Yao et al. 

(2008) ). These symmetries are problematic in a branch-and-bound 

process, since they increase the size of the search space and, per- 

haps even worse, result in wasted time searching the branch- 

and-bound tree that are symmetric to already visited—and failed—

states ( Walsh, 2012 ). Symmetry-breaking constraints can be in- 

cluded in the mixed-integer program to assist in eliminating this 

type of symmetry. In our implementation, we will “fix” some vari- 

ables by including constraints that ensure the first replenishment 

of an item is at time 0 (i.e., for item i , X i 0 = 1 and X i j = 0 for 

j = 1 , . . . , k i − 1 ). 

As indicated by Yao et al. (2008) , we can fix the variables 

for one item without loss of generality. To identify which item(s) 

should be selected for assignment, we consider two guidelines: ( 1 ) 

fix the item with the largest k i , since the number of binary vari- 

ables and the number of feasible solutions are dependent on these 

values, and ( 2 ) using the concept from the first-fit decreasing algo- 

rithm of bin packing, first assign the largest items (i.e., the largest 

q i ) placing the smaller items into the residual space (Constraint 3). 

To incorporate both guidelines, we propose fixing the item with 

the largest k i × q i value. 

While previous research has suggested fixing only one item, we 

propose fixing additional items without compromising the optimal 

solution for situations in which the length of the planning horizon 

is greater than or equal to the least common multiple of the order 

cycle lengths of all items. The Chinese remainder theorem (e.g., van 

Tilborg, 2011 ) guarantees that, for two items with coprime order 
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