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In this paper, we explore the use of static risk measures from the mathematical finance literature to as- 

sess the performance of some standard nonstationary queueing systems. To do this we study two impor- 

tant queueing models, namely the infinite server queue and the multi-server queue with abandonment. 

We derive exact expressions for the value of many standard risk measures for the M t / M / ∞ , M t / G / ∞ , and 

M t / M t / ∞ queueing models. We also derive Gaussian based approximations for the value of risk mea- 

sures for the Erlang-A queueing model. Unlike more traditional approaches of performance analysis, risk 

measures offer the ability to satisfy the unique and specific risk preferences or tolerances of service op- 

erations managers. We also show how risk measures can be used for staffing nonstationary systems with 

different risk preferences and assess the impact of these staffing policies via simulation. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Time varying queueing models such as the M t / G / ∞ queue and 

the M t /M/k t + M queue are standard models for describing the dy- 

namics of large scale service systems like telecommunication sys- 

tems, call centers, and healthcare systems like hospitals. To get a 

good understanding of the wide variety of applications of nonsta- 

tionary queueing models, see for example ( Khudyakov, Feigin, & 

Mandelbaum, 2010 ) for applications to call centers with interactive 

voice response and Yom-Tov and Mandelbaum (2014) for applica- 

tion to healthcare systems. However, staffing these systems appro- 

priately and stabilizing salient performance measures such as the 

probability of delay and waiting times for these stochastic systems 

has been a long standing problem in the queueing literature for 

many years. 

One of the first solutions for stabilizing the delay probabilities 

for multiserver queues without abandonment was developed by 

Jennings, Mandelbaum, Massey, and Whitt (1996) . Jennings et al. 

(1996) develop a novel square root staffing algorithm that uses 

the offered load of an infinite server queue and the square root 

of the offered load for refinements to stabilize the delay proba- 

bilities in multi-server queues. In the case of exponential service 

times, it only requires the solution to a simple ordinary differ- 
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ential equation to find the appropriate staffing level. However, as 

noted in Feldman, Mandelbaum, Massey, and Whitt (2008) and Liu 

and Whitt (2012) and Massey and Pender (2013) , this algorithm for 

stabilizing the delay probabilities does not stabilize the abandon- 

ment probabilities and other performance measures. Thus, Liu and 

Whitt developed a new approach that stabilizes the abandonment 

probabilities and mean delay using the combination of two infinite 

server queues. 

Nonetheless, these algorithms for performance stabilization are 

only useful for a few performance measures that are well-studied 

in the queueing literature and are especially tailored for appli- 

cations in telecommunications where there is no extreme conse- 

quence if a customer waits a long time for service. For instance, 

in a call center it is considered good performance if 99 percent 

of customers are served within 2 minutes and we might not care 

about the 1 percent of customers who might have extremely long 

wait times. However, in a healthcare or emergency care setting, 

patients with extremely long waiting times can be very costly 

to the hospital, especially if their health deteriorates while wait- 

ing and subsequently they die before being seen, see for exam- 

ple ( Castillo, 2014 ). Consequently, it is not sufficient to just make 

sure that waiting times are short, but it is also important to make 

sure that even excessive waiting times are short in the context of 

healthcare. 

To address the difference between application settings like 

telecommunications and healthcare, in this paper we propose ana- 

lyzing the new problems in applications like healthcare with new 
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ideas, namely using static risk measures from the mathematical fi- 

nance literature. The advantage of using static risk measures over 

traditional approaches of performance analysis, is that the risk 

measure approach can be adapted to a manager’s risk preferences 

and the particular application context. The fact that the risk mea- 

sure approach can be adapted to different applications and in dif- 

ferent contexts within a particular application is quite useful for 

managers of service systems. One example in healthcare is that 

patients with shortness of breath might be less willing to tolerate 

long waits than patients with an ankle sprain so a different risk 

measure should be used for those patients. Thus, this risk measure 

approach allows the manager of a service center such as hospital 

to choose his or her own risk preferences for the overall perfor- 

mance of the system as well as the individual parts of the system. 

In order to develop this risk measure approach for general ser- 

vice systems, we need to specify a stochastic model for the dynam- 

ics of our service systems. In this paper, we begin with the infinite 

server queueing model. This model is very natural as a start since 

its dynamics are tractable in the stationary and nonstationary set- 

ting. Not only are the mean and variance dynamics tractable, but 

also the entire distribution is known for the infinite server queue 

when initialized with a Poisson distribution or at zero. Besides the 

fact that the infinite server queue is a relatively simple model, it 

is also an offered load model. Thus, the infinite server dynamics 

represents the system when an unlimited number of resources are 

available and serves as an lower bound for the dynamics of finite 

server systems. 

In addition to the infinite server queue, we also analyze the 

canonical nonstationary Erlang-A queueing model. The nonstation- 

ary Erlang-A model assumes the customer arrival process is a non- 

homogenous Poisson process with nonstationary arrival rate λ( t ). 

We also have k servers with i.i.d. service times that are exponen- 

tially distributed with mean 1/ μ. Finally, all the customers have 

i.i.d. abandonment times that are also exponentially distributed 

with mean 1/ β . Although the Erlang-A model is a simple model for 

some complex realities, it is also very hard to find closed form ex- 

pressions for many of the performance measures of interest in the 

nonstationary setting. Thus, we must find approximations of the 

Erlang-A that are accurate and more tractable in terms of provid- 

ing closed form expressions for performance measures of interest. 

One standard method would be to use the fluid and diffusion 

limits of Mandelbaum, Massey, and Reiman (1998) . However, it 

is well known that for small values of the scaling parameter η, 

the fluid and diffusion limits are not warranted. Moreover, when 

the mean queue length is near the number of servers, the fluid 

and diffusion limits are not Gaussian. Thus, in this work, we use 

another approximation to accurately estimate the queue length 

process. This approximations is known as the Gaussian variance 

approximation (GVA) of Massey and Pender (2011) and uses a 

Gaussian surrogate distribution to approximate the queue length 

dynamics. With this approximation for the queue length dynamics, 

we then approximate various risk measures for the queue length 

process and illustrate their performance as tools for staffing the 

system. We are not the first to study staffing issues in queues, 

see for example ( Engblom & Pender, 2014; Pender, 2015; Stolletz, 

2008; Tirdad, Grassmann, & Tavakoli, 2016; Yarmand & Down, 

2013 ), however, we are the first to use risk measures in this 

context. 

1.1. Contributions 

To the best of our knowledge our contributions in this work are 

the following. 

• We are the first to illustrate how static risk measures from 

the mathematical finance literature can be used in the con- 

text of server staffing and performance analysis in queueing 

theory. 
• We derive explicit approximate staffing schedules for various 

risk measures that are widely used in the financial community 

and derive closed form expressions for the values of risk mea- 

sures under Poisson and Gaussian distributional assumptions. 
• We use the risk measures as staffing procedures and assess 

the results through comparing standard performance measures 

such as the probability of delay and abandonment probabilities. 

1.2. Outline of paper 

The rest of the paper is as follows. In Section 2 , we introduce 

the concept of risk measures and provide several examples of risk 

measures. We also introduce the concept of functional risk mea- 

sures, which will also be used throughout the rest of the paper. 

In Section 3 , we start with the infinite server queue and derive 

closed form formulas for several risk measures for the queueing 

process. In Section 4 , we introduce the Erlang-A model and sev- 

eral approximations for it. In Section 5 , we use the approximations 

for the Erlang-A model queueing model and derive closed form ex- 

pressions for the risk measures of the queueing model. In Section 

6, we give numerical results and describe the impact of using the 

risk measures for staffing the system. We give examples of some 

extensions and conclude with final remarks in Section 7. 

2. Static risk measures 

One of the central goals in mathematical finance is to assess 

the risk of financial positions. The risk of a financial position may 

be seen as the capital reserves that a bank should hold in response 

to the risk it exposes itself to. Inspired by this notion of risk as a 

minimal capital reserve and by the shortcomings of V @ R , Artzner 

et al. (1997,1999) introduced an axiomatic approach to coherent 

risk measures. The goal of a coherent risk measure is to quantify 

the risk of X by a number ρ( X ). It is our goal in this paper to in- 

troduce this notion of risk measures into the world of queueing 

theory where there are analogous notions of risk and reserves. In 

fact, in the context of queueing theory and staffing, the notions of 

risk and reservers can be viewed as the number of staff needed to 

maintain a specific quality of service level. Before we describe how 

various risk measures are related to various performance quantities 

in the service systems literature, we give a brief overview of risk 

measures to make the paper self-contained for the reader’s conve- 

nience. 

Definition 2.1. A mapping ρ : X → R ∪ { + ∞} is called a monetary 

risk measure if ρ(0) is finite and if ρ satisfies the following condi- 

tions for X,Y ∈ X . 

• Monotonicity: If X ≤ Y , then ρ( X ) ≥ ρ( Y ). 
• Cash Invariance: If m ∈ R , then ρ(X + m ) = ρ(X ) − m 

These two conditions are very necessary to define risk measure. 

It is clear that if X is always smaller than Y under every scenario 

( ∀ ω), then the risk associated with X should be higher than the 

risk associated with Y. Moreover, if we add cash to our position, it 

should reduce the risk of that position because cash is not a risky 

asset. 

Definition 2.2. A monetary risk measure ρ is called a convex or 

quasi-convex risk measure if ρ satisfies the following condition for 

X,Y ∈ X . 

• Convex: If ρ(λX + (1 − λ) Y ) ≤ λρ(X ) + (1 − λ) ρ(Y ) for all λ ∈ 

[0,1]. 
• Quasi-Convex: If ρ(λX + (1 − λ) Y ) ≤ max { ρ(X ) , ρ(Y ) } for all λ

∈ [0,1] 
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