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a b s t r a c t 

In this paper we search for conditions on age-structured differential games to make their analysis more 

tractable. We focus on a class of age-structured differential games which show the features of ordinary 

linear-state differential games, and we prove that their open-loop Nash equilibria are sub-game perfect. 

By means of a simple age-structured advertising problem, we provide an application of the theoretical 

results presented in the paper, and we show how to determine an open-loop Nash equilibrium. 
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1. Introduction 

In this paper we want to extend the concept of linear-state 

differential game to a family of models with age-structured dy- 

namics. In the last few years there has been an increasing num- 

ber of papers on applications of age-structured optimal control. 

For an introduction to this topic the reader can consult the book 

by Grass, Caulkins, Feichtinger, Tragler, and Behrens (2008 , Chap- 

ter 8, pp. 417–421) or the book by Ani ̧t a, Arn ̆autu, and Capasso 

(2011 , Chapter 4, pp. 145–184). Moreover, three papers are impor- 

tant for our analysis. Feichtinger, Tragler, and Veliov (2003) intro- 

duce a very general set of Pontryagin-type necessary conditions, 

while Feichtinger, Hartl, Kort, and Veliov (2006) describe the an- 

ticipation effect: in age-structured models it is convenient to an- 

ticipate an investment flow to take advantage of the age evolution. 

Finally, Krastev (2013) presents a set of Arrow-type sufficient con- 

ditions. This is definitely a non-exhaustive list, but browsing the 

references in the just mentioned papers the reader can find a va- 

riety of different applications in this active research field. On the 

other hand, only a few applications of these mathematical tech- 

niques to differential games have been proposed so far. To the best 

of our knowledge, one of the first papers on applications of partial 

differential games is by Roxin (1977) , who presents two examples: 

one on pollution control, the other on competitive fishing. A more 

technical paper on partial differential games is by Ichikawa (1976) , 

who shows how to study the linear-quadratic differential games 

when the motion equation is described using a strongly continuous 

semigroup. Even if this approach is rather technical, the reference 

may be useful for further research on age-structured differential 
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games. Finally, as far as we know, the most recent application is 

by Reluga and Li (2013) in the field of mathematical biology. 

The fact that there are only few applications of age-structured 

optimal control to differential games is surely due to the complex- 

ity that arises in the analysis of the necessary conditions for this 

kind of models. However, even ordinary differential games are dif- 

ficult to analyze, so that, in the applications, it is customary to fo- 

cus on some special families of differential games. Two of them 

are the linear-quadratic differential games Engwerda (2005) and the 

linear-state differential games ( Dockner, Jørgensen, Van Long, and 

Sorger, 20 0 0 , Chapter 7, p. 187). The analysis of these kinds of dif- 

ferential games is mathematically tractable and allows the charac- 

terization of strong equilibria: for example it has been proved that 

an open-loop Nash equilibrium in a linear-state differential game is 

sub-game perfect ( Dockner, Jørgensen, Van Long, and Sorger, 20 0 0 , 

Chapter 7, p. 189). 

In this paper we define a class of age-structured differen- 

tial games which has the features of ordinary linear-state differ- 

ential games. In Section 2 we present a quick review of age- 

structured optimal control and we introduce a formulation of an 

age-structured differential game. In Section 3 we introduce the 

linear-state formulation of an age-structured differential game and 

we show that it is the right formulation, because we can prove 

the sub-game perfectness of the open-loop Nash equilibria. In 

Section 4 we describe a very simple advertising model with age- 

structured dynamics which is useful to show how to characterize 

an open-loop Nash equilibrium. 

2. Age-structured models 

2.1. Age-structured optimal control problems 

First of all we present a formal definition of an age-structured 

optimal control problem. We inform the readers that the material 
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introduced in this subsection is presented to make the paper self- 

contained and is taken from the seminal work by Feichtinger et al. 

(2003) . 

Definition 1. An age-structured optimal control problem is defined 

by stating an objective functional to maximize 

max 
u ( t,a ) ∈ U, v ( t ) ∈ V 

{ 

J ( u ( t, a ) , v ( t ) ) 

= 

∫ T 

0 

∫ ω 

0 

L ( t, a, y ( t, a ) , p ( t, a ) , u ( t, a ) ) d ad t 

+ 

∫ ω 

0 

� ( a, y ( T , a ) ) da + 

∫ T 

0 

L ( t, q ( t ) , v ( t ) ) dt 

}
, (1) 

subject to a motion PDE 

( ∂ t + ∂ a ) y ( t, a ) = f ( t, a, y ( t, a ) , p ( t, a ) , q ( t ) , u ( t, a ) ) , 

y ( 0 , a ) = y 0 ( a ) , 

y ( t, 0 ) = k ( t, q ( t ) , v ( t ) ) , (2) 

where the non-local variables p ( t , a ) and q ( t ) are defined as fol- 

lows: 

p ( t, a ) = 

∫ ω 

0 

g ( t, a, σ, y ( t, σ ) , u ( t, σ ) ) dσ, 

q ( t ) = 

∫ ω 

0 

h ( t, σ, y ( t, σ ) , u ( t, σ ) ) dσ. (3) 

A feasible control u ( t , a ) is an element of the set of the mea- 

surable and essentially bounded functions L ∞ 

([0, T ] × [0, ω]; U ) 

where U is a compact subset of R ; a feasible control v ( t ) be- 

longs to L ∞ 

([0, T ]; V ) where V is a compact and convex subset of 

R . Given a couple of feasible controls ( u ( t, a ) , v ( t ) ) there exists a 

unique state function y ( t, a ) ∈ L ∞ 

( [ 0 , T ] × [ 0 , ω ] ; R ) which satisfies 

(2) and (3) . The couple of feasible controls ( u ∗( t, a ) , v ∗( t ) ) is opti- 

mal if and only if 

J(u 

∗( t, a ) , v ∗( t, a ) ) ≥ J(u ( t, a ) , v ( t, a ) ) 

for all couples of feasible controls (u ( t, a ) , v ( t, a ) ) . 

In this definition we are assuming that the functions 

L, �, L , f, g, h, k are measurable with respect to the variables t , a , σ , 

continuous with respect to the remaining variables, locally essen- 

tially bounded, and differentiable w.r.t. y, p, q, u, v . Moreover, the 

partial derivatives are measurable w.r.t. t , a , σ , continuous w.r.t. 

the remaining variables, and locally essentially bounded. For fur- 

ther details on the analytical setting we refer to the seminal paper 

by Feichtinger et al. (2003) where the Pontryagin-like necessary 

conditions are introduced. The idea behind this formulation is the 

following: the decision-maker wants to control the evolution of the 

PDE in the set [0, T ] × [0, ω]; the first variable t ∈ [0, T ] represents 

the time (the programming horizon is finite, T > 0), while the sec- 

ond variable a ∈ [0, ω] represents the age ( ω > 0 is the maxi- 

mum age we take into account). The quantity y ( t , a ) is the value 

of the state function at the time t for the “class” of age a . Time 

and age evolve together; the motion equation describing the state 

variable evolution in time and age is a linear PDE. In the two seg- 

ments {0} × [0, ω] and [0, T ] × {0} we define the boundary con- 

ditions as follows: at the time t = 0 the value of the state function 

is known for all a ∈ [0, ω] and it is given by the function y 0 ( a ); 

while at each time t the value of the state function for the age 

a = 0 is given in an implicit way. This value is defined using the 

equation y ( t, 0 ) = k ( t, q ( t ) , v ( t ) ) where v ( t ) is a control, while q ( t ) 

is a “non-local” variable that depends on the shapes of the state 

and control functions along the segment { t } × (0, ω]. A clarifying 

example is provided in the field of population dynamics, where y ( t , 

a ) represents the number of people of age a at the time t . In this 

kind of model the number of newborns at a given time (i.e. y ( t , 

0)) depends on the age distribution of the population at that time 

(to explore this topic we suggest the interesting paper written by 

Simon, Skritek, and Veliov, 2013 and the references therein). The 

non-local variable q ( t ) is present also in the motion equation. In 

order to describe a different phenomenon another non-local vari- 

able p ( t , a ) is defined. This variable represents the influence of the 

“age-class” σ on the “age-class” a at a given fixed time t . In our 

opinion, an application that clearly explains the meaning of this 

non-local variable in the context of drug initiation is by Almeder, 

Caulkins, Feichtinger, and Tragler (2004) . In this model y ( t , a ) rep- 

resents the number of non-drug-users. At a fixed time t , for all σ
∈ [0, ω], the number of non-drug-users in the age-class σ (i.e. y ( t , 

σ )) can influence the evolution of y ( t , a ) because of reputation in- 

teractions among different age groups. 

The decision maker chooses the control functions u ( t , a ) and 

v ( t ) in order to maximize the objective functional (1) . This is the 

sum of three terms: the first one depends on the values of the 

state and control functions on their whole domain [0, T ] × [0, ω]; 

the second term depends on the values of the state function in 

the final segment { T } × [0, ω]; finally, the third term depends on 

the values of the state and control functions through the synthesis 

along the segment { t } × (0, ω] provided by the function q ( t ). 

The formulation of the problem in Definition 1 is less general 

than other formulations considered in literature, as we assume that 

the initial value for the state function y ( t , a ) is given a priori (it 

does not depend on further control), and that the quantity q ( t ) is 

defined explicitly ( the function h does not depend on p or q ). This 

clarifies the presentation and makes the analytical setting simpler. 

Given the optimal control problem introduced in Definition 1 , 

we define the distributed Hamiltonian 

H ( t, a, y, p, q, u, λ, η( t, σ ) , ζ ) 

= L ( t, a, y, p, q, u ) + λ f ( t, a, y, p, q, u ) 

+ 

∫ ω 

0 

η( t, σ ) g ( t, a, σ, y, u ) dσ + ζh ( t, a, y, u ) (4) 

and the boundary Hamiltonian 

H 

b ( t, q, v , λ( t, 0 ) ) = L ( t, q, v ) + λ( t, 0 ) k ( t, q, v ) . (5) 

Moreover, we define the adjoint variables as follows: λ( t , a ) sat- 

isfies 

( ∂ t + ∂ a ) λ( t, a ) = −∂ y H(t, a, y ( t, a ) , p ( t, a ) , q ( t ) , u ( t, a ) , 

λ( t, a ) , η( t, σ ) , ζ ( t ) ) , 

λ( t, ω ) = 0 , 

λ( T , a ) = ∂ y � ( a, y ( T , a ) ) , (6) 

while η( t , a ) and ζ ( t ) are defined explicitly by the equations: 

η( t, a ) = ∂ p H(t, a, y ( t, a ) , p ( t, a ) , q ( t ) , u ( t, a ) , 

λ( t, a ) , η( t, a ) , ζ ( t ) ) , 

ζ ( t ) = ∂ q H 

b ( t , q ( t ) , v ( t ) , λ( t , 0 ) ) 

+ 

∫ ω 

0 

∂ q H(t, a, y ( t, a ) , p ( t, a ) , q ( t ) , u ( t, a ) , 

λ( t, a ) , η( t, a ) , ζ ( t ) ) da. (7) 

We observe that, under our assumptions, Eq. (7) defines the 

quantities η( t , a ) and ζ ( t ) explicitly, as the functions ∂ q H and ∂ p H 

do not depend on the two variables η and ζ . The assumptions in- 

troduced after Definition 1 allow us to apply the necessary condi- 

tions for optimality described by Feichtinger et al. (2003) and re- 

called by Krastev (2013) . 

Theorem 1 (Necessary conditions) . Let ( u ∗( t, a ) , v ∗( t ) ) be an opti- 

mal couple of controls for the age-structured problem (1) –(3) and let 

y ∗( t , a ) be the state function associated with that couple of controls. 
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