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a b s t r a c t 

This paper presents an exact algorithm for solving the knapsack sharing problem with common items. In 

literature, this problem is also denominated the Generalized Knapsack Sharing Problem (GKSP). The GKSP 

is NP-hard because it lays on the 0–1 knapsack problem and the knapsack sharing problem. The proposed 

exact method is based on a rigorous decomposition technique which leads to an intense simplification 

of the solution procedure for the GKSP. Furthermore, in order to accelerate the procedure for finding 

the optimum solution, an upper bound and several reduction strategies are considered. Computational 

results on two sets of benchmark instances from literature show that the proposed method outperforms 

the other approaches in most instances. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

This paper presents an exact algorithm for solving the knapsack 

sharing problem with common items (see e.g., Fujimoto & Yamada, 

2006 ). In literature, this problem is also denominated the General- 

ized Knapsack Sharing Problem (GKSP). As a generalization of the 

knapsack sharing problem, which has attracted wide attention in 

the context of the fair distribution of resources, the GKSP appears 

to be more valuable in real-world applications. This is due to the 

main consideration of the GKSP, which assumes that all agents 

have common interests while each of them searches for his own 

benefits. Such a system could be helpful for developing the incen- 

tive mechanism design for mobile phone sensing (see e.g., Zhang 

et al., 2014 ). 

An instance of the GKSP is characterized by a fixed knapsack ca- 

pacity C gksp and a set N of n + 1 disjoint subsets N 0 , N 1 , . . . , N n , 

such that N = ∪ 

n 
i =0 

N i and N i ∩ N j = ∅ for ( i � = j ). The first subset 

N 0 denotes the set of common items whereas all other subsets 

N i , i = 1 , . . . , n, denotes the set of uncommon (individual) items. 

Each item i belonging to the set N i , i = 0 , . . . , n, is characterized 

by its profit and weight. In this paper, we assume that the profits 

and weights are positive integers. The objective of the problem is 

to determine a set of items that maximizes the minimal value of a 

set of linear functions under the capacity. 

Let P kp be a 0–1 Knapsack Problem (KP) defined on the set 

of common items (i.e., N 0 ) and P ksp be the Knapsack Sharing 
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Problem (KSP) defined on the set of uncommon items (i.e., ∪ 

n 
i =1 N i ). 

Assume that N 0 contains m 0 items and N i contains m i items, for 

i = 1 , . . . , n . Therefore, P kp and P ksp can be formally defined as fol- 

lows: 

(P kp ) Z kp = max p 0 · x 0 

s.t. w 0 · x 0 ≤ C kp 

x 0 ∈ { 0 , 1 } m 0 

and 

(P ksp ) Z ksp = max min 

1 ≤i ≤n 
{ p i · x i } 

s.t. 

n ∑ 

i =1 

w i · x i ≤ C ksp 

x i ∈ { 0 , 1 } m i , ∀ i = 1 , . . . , n, 

where C kp (resp. C ksp ) is the capacity, p 0 (resp. p i , ∀ i = 1 , . . . , n ) is 

the profit vector related to the common (resp. uncommon) items, 

w 0 (resp. w i , ∀ i = 1 , . . . , n ) is the weight vector related to the 

common (resp. uncommon) items, and x 0 is the variable vector 

(resp. x i , ∀ i = 1 , . . . , n ) of P kp (resp. P ksp ). Based on mathematical 

models of P kp and P ksp , P gksp can be written as follows: 

(P gksp ) Z gksp = max min 

1 ≤i ≤n 
{ p i · x i } + p 0 · x 0 

s.t. 

n ∑ 

i =1 

w i · x i + w 0 · x 0 ≤ C gksp 

x 0 ∈ { 0 , 1 } m 0 , x i ∈ { 0 , 1 } m i , ∀ i = 1 , . . . , n, 

where C gksp = C kp + C ksp . Indeed, P gksp can be recognized as a com- 

bination of P kp and P ksp . From this property, the rest of this 
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paper is devoted to propose some decomposition and reduction 

techniques for the GKSP. It implies that, instead of directly address- 

ing P gksp , we try to find the optimum solution of the GKSP by solv- 

ing a series of P kp and P ksp . 

2. Related work 

GKSP can be viewed as a blend of two well-known combina- 

torial optimization problems: the 0–1 Knapsack Problem (KP) and 

the Knapsack Sharing Problem (KSP). As introduced in Karp (1972) , 

the KP is one of the classical NP-hard problems, which has been 

widely studied in literature. For further details, the reader can re- 

fer to Martello and Toth (1990b) , Kellerer, Pferschy, and Pisinger 

(2004) . Recently, in Rooderkerk and van Heerde (2016) , authors 

showed that the KP can be also investigated in the retail assort- 

ment optimization problem in order to balance the risk and the 

return of assortments. In literature, two well known exact algo- 

rithms have been proposed for the KP: (i) the dynamical program- 

ming algorithm (see e.g., Horowitz & Sahni, 1974 ) and the branch- 

and-bound algorithm (see e.g., Pisinger, 1997 ). Based on these two 

approaches, some hybrid methods have been developed for solving 

complex optimization problems belonging to the knapsack family 

(see e.g., Martello & Toth, 1984 ; Pisinger, Martello, & Toth, 1999 ). 

KSP has been first studied by Brown (1979) , where its binary 

version becomes NP-hard since it represents an intuitive general- 

ization of the KP or the maximum independent set problem ( Hifi

& M’Hallah, 2012; Kellerer et al., 2004 ). Yamada, Futakawa, and 

Kataoka (1998) proposed different exact algorithms based on the 

branch-and-bound algorithm and the dichotomous search for solv- 

ing the KSP. Hifi and Sadfi (2002) and Hifi, M’Halla, and Sadfi

(2005) designed several dynamic programming algorithms to ac- 

celerate the resolution process. In order to enhance the perfor- 

mance of the dynamic programing, Boyer, Baz, and Elkihel (2011) 

proposed several improved dominance notions based on solving a 

series of instances of the KP. Meanwhile, Hifi and M’Halla (2010) 

proposed a tree search-based approach to improve the perfor- 

mance of the branch-and-bound algorithm. Recently, Hifi and Wu 

(2014) developed an upper bound and an efficient dichotomous ex- 

act method for the KSP. The proposed method applies an exact de- 

composition strategy, where the original problem is decomposed 

into a series of minimization and maximization knapsack prob- 

lems. For the large complex KSP, we cite a hybrid metaheuristic 

proposed in Haddar, Khemakhem, Rhimi, and Chabchoub (2014) , 

which applies a quantum particle swarm optimization approach to 

find approximate solutions for the KSP. The results showed that the 

proposed method was able to provide high-quality solutions within 

a reasonable time. 

To our knowledge, few papers are available in literature about 

the exact solution of the GKSP. Among these papers, we cite the 

paper of Fujimoto and Yamada (2006) in which an exact enumer- 

ation method was designed. The method consists of determining 

the optimum solution by enumerating all possible values related 

to the capacity of the KP and the KSP. For solving the KP, Horowitz 

and Sahni’s (1974) exact algorithm is used whereas Yamada et al.’s 

(1998) exact method is applied for solving the relevant KSP. In 

Fujimoto and Yamada (2006) , the authors underlined the effec- 

tiveness of the method on uncorrelated and weakly correlated 

instances. Nevertheless, it failed to find optimum solutions for 

large strongly correlated instances. In Haddar, Khemakhem, Hanafi, 

and Wilbaut (2015) , a quantum particle swarm optimization was 

elaborated to approximately solve the GKSP. The provided results 

showed that the proposed approach was able to efficiently find the 

high-quality solutions in most cases, especially in the strongly cor- 

related case. 

As shown in Conejo, Castillo, Minguez, and Garcia-Bertrand 

(2006) and Raidl (2015) , decomposition based techniques achieved 

great success in reducing computational effort for solving com- 

plex combinatorial optimization problems. Therefore, this paper 

addresses an exact decomposition technique for finding the opti- 

mum solution of the GKSP. The provided subproblems are solved 

by using the most recently available strategies. Furthermore, a new 

upper bound and several reduction strategies are introduced for 

accelerating the convergence of optimum solutions of the GKSP. 

The remainder of the paper is organized as follows. Section 3 

begins by summarizing the principle of the proposed exact 

method. Section 3.1 introduces a new upper bound used to cur- 

tail the search process. Section 3.2 discusses some strategies used 

to determine and improve lower bounds for the GKSP. Section 3.3 

gives an overview of the proposed exact method. In Section 4 , the 

performance of the proposed exact method is evaluated and ana- 

lyzed on a variety of instances from literature. The obtained results 

are compared with those of the most recent approach ( Haddar 

et al., 2014 ), the Cplex solver (version 12.6) and the best exact 

method available in literature ( Fujimoto & Yamada, 2006 ). 

3. A decomposition method for the GKSP 

In this section, we present an algorithm for optimally solving 

the GKSP. The principle of the algorithm is based on enumerat- 

ing all possible combinations between the capacity setting of the 

KP and that of the KSP. Let Z kp ( C kp ) (resp. Z ksp ( C ksp )) be the opti- 

mum objective value of the KP (resp. the KSP) for a given capacity 

C kp (resp. C ksp ). According to P gksp , P ksp and P kp given in Section 1 , 

an available objective value (a valid lower bound) for the GKSP, 

namely L gksp , can be written as follows: 

L gksp (C kp ) = Z kp (C kp ) + Z ksp (C gksp − C kp ) (1) 

where C kp is a positive integer which denotes the capacity of the 

relevant 0–1 knapsack problem P kp . Note that, such a value has 

been already defined as a discontinuity point in Fujimoto and Ya- 

mada (2006) . In the rest of this section, our study focuses on the 

use of evaluation and reduction strategies for finding a target value 

C � 
kp 

such that L gksp (C 
� 
kp 

) is equal to Z gksp , where Z gksp represents the 

optimum objective value of P gksp . 

3.1. Upper bound for the GKSP 

The development of upper bounds plays a central role in im- 

proving the performance of exact methods used to solving max- 

imization problems, such as branch-and-bound based algorithms. 

The effectiveness of an upper bound is measured by two criteria: 

its objective value and the required computational effort. A tighter 

upper bound can usually induce faster convergence toward the op- 

timum solution. Meanwhile, the runtime required to compute the 

upper bound must be acceptable. Therefore, in this section, we in- 

troduce an upper bound of P gksp based on using certain special 

properties of the GKSP. 

An integer linear program for P gksp , denoted by LP gksp , can be 

formally written as follows: 

( LP gksp ) Z gksp = max γ + p 0 · x 0 

s.t. w 0 · x 0 ≤ C kp (2) 

n ∑ 

i =1 

w i · x i ≤ C gksp − C kp (3) 

p i · x i ≥ γ , ∀ i = 1 , . . . , n (4) 

C kp ∈ N (5) 

γ ∈ N , x 0 ∈ { 0 , 1 } m 0 , x i ∈ { 0 , 1 } m i , ∀ i = 1 , . . . , n. (6) 
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