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a b s t r a c t 

Ridge analysis allows the analyst to explore the optimal operating conditions of the experimental factors. 

A confidence region is desirable for the estimated ridge path. Most literature concentrates on the uni- 

variate response situation. Little is known for the confidence region of the ridge path for the multivariate 

response; only a large-sample confidence interval for the ridge path is available. The simultaneous cov- 

erage rate for the existing interval is typically too conservative in practice, especially for small sample 

sizes. In this paper, the ridge path (via desirability function) is estimated based on the seemingly unre- 

lated regression (SUR) model as well as standard multivariate regression (SMR) model, and a conservative 

confidence interval suitable for small sample sizes is proposed. It is shown that the proposed method 

outperforms the existing methods. Real-life examples and simulative study are given for illustration. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Ridge analysis, first introduced by Hoerl (1959) , is used to ex- 

plore the optimal setting of the experimental variables. Consider 

the response surface model y = f (x, θ ) + ε, where y is the re- 

sponse variable, x is the vector of input variables, θ is the vector 

of model parameters, and ε is the error. Without loss of gener- 

ality, suppose that maximization of the response is desirable. Let 

g(θ, r) = max x ′ x = r 2 f (x, θ ) represent the constrained optimal mean 

response value, where r is the distance from the center of the ex- 

periment region. A ridge path is the locus of the g ( θ , r ) on differ- 

ent radii ( r ) of the surface. The typical output of a ridge analysis 

is presented as two two-dimensional plots: a plot of g ( θ , r ) vs. r 

and an overlay plot of x ir vs. r (i = 1 , . . . , l) , where l is the number 

of input variables. These are typically used to locate the optimal 

operating conditions. 

The true value of the model parameter θ is unknown in prac- 

tice, and the estimated value ˆ θ is used. Thus, the plot of g( ̂  θ, r) 

vs. r is only a statistical point estimate of the true ridge path. 

To construct the confidence region of the ridge path is obviously 

important since it can measure the accuracy of the estimation. 

Carter, Chinchilli, Myers, and Campbell (1986) proposed the use 

of simultaneous confidence bounds for a ridge path. Peterson 
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(1993) gave a general approach to ridge analysis with confidence 

intervals. Both of them are limited to univariate responses. When 

multiple responses are involved in experiments, the common 

approach converts the multiple responses into a univariate index. 

Such a conversion is intentionally biased, however. Thus, it is 

desirable to investigate the standard error of the fitted parameters 

and their effects on optimization indices (See Hunter, 1999 ). 

Furthermore, the ridge path is well defined in univariate cases, but 

as by Lin (1999) it is hard to extend those ideas from univariate to 

multivariate cases straightforwardly. How to appropriately apply 

ridge analysis to multivariate cases deserves further study. 

Ding, Lin, and Peterson (2005) applied the standard multivariate 

regression (SMR) model to fit the response surface model (RSM) 

and developed a large-sample simultaneous confidence interval for 

a multi-response ridge path based on the desirability function. 

However, their method may not be appropriate when the sample 

size is small. When the SMR model is used, it likely leads to over- 

fitting for some responses because the design matrix is identical 

for each response in SMR but the significant terms for each re- 

sponse may be different. Here, a new approach to construct con- 

fidence intervals with multiple response surfaces is proposed. The 

seemingly unrelated regressions (SUR) model ( Zellner, 1962 ) is em- 

ployed in our method. The SUR model could fit the model with 

different experimental factors for each response, meanwhile it es- 

timates the correlations among all responses. Compared with the 

existing methods, the proposed method using the SUR model, re- 

sults in a smoother and more reliable confidence interval when the 
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sample size is small. This will help experimenters to locate the op- 

timal setting in an efficient manner. 

The paper is organized as follows. In Section 2 , a brief review of 

ridge analysis is presented. Estimating a ridge path based on SUR 

model and a conservative confidence approach are then proposed 

in Section 3 . Section 3 also provides the algorithm of the proposed 

method and its general properties. In Section 4 , the tire tread ex- 

ample (with small sample size) is used for illustration with com- 

parisons to previous works, as well as a large sample case. A fur- 

ther simulation study is also provided. The conclusion is given in 

Section 5 . 

2. Statistical inference for the ridge path 

2.1. Confidence intervals for a single response ridge path 

Peterson (1993) took f ( x , θ ) as z ( x ) ′ θ , where z ( x ) is a p ×
1 vector-valued function of a k × 1 vector of factors. Thus, 

the response surface model y = f (x, θ ) + ε can be represented 

as y = z(x ) ′ θ + ε. Then, the ridge path g ( θ , r ) becomes g(θ, r) = 

max x ′ x = r 2 z(x ) ′ θ . Carter et al. (1986) proposed the simultaneous 

confidence bounds of the optimal responses for various r , and the 

form of the confidence bounds can be written as [ 
min 

θ∈ C 
{ max 

x ′ x = r 2 
z(x ) ′ θ} , max 

θ∈ C 
{ max 

x ′ x = r 2 
z(x ) ′ θ} 

] 
, (1) 

where C is a 100(1 − α)% confidence region for θ . The con- 

fidence region C is defined as C = { θ : (θ − ˆ θ ) ′ V −1 (θ − ˆ θ ) ≤
c 2 α} , where ˆ θ is an estimate of θ , V is an estimate of 

v ar( ̂  θ ) , and c 2 α = pF (1 − α, p, n − p) , with n being the sam- 

ple size and F (1 − α, p, n − p) is the 100(1 − α) th percentile 

of the F distribution with p and (n − p) degrees of free- 

dom. Peterson (1993) proposed an alternative confidence bound 

as 
[
max x ′ x = r 2 { min θ∈ C z(x ) ′ θ} , max x ′ x = r 2 { max θ∈ C z(x ) ′ θ} ]. Because 

z ( x ) ′ θ is linear in θ , the confidence interval can be written as 

max x ′ x = r 2 { z(x ) ′ ˆ θ ± c α(z(x ) ′ V z(x )) 
1 
2 } . For a rotatable design, this 

can be further simplified as max x ′ x = r 2 { z(x ) ′ ˆ θ} ± c α ˆ σv (r) 
1 
2 , where 

ˆ σ 2 is the sample-error mean square and v (r) = z(x ) ′ (Z ′ Z) −1 z(x ) , 

with x ′ x = r 2 . Z is the regression model matrix. 

Note that the Carter et al. (1986) approach requires a nonlinear 

optimization solver for max z ( x ) ′ θ subject to x ′ x = r 2 to obtain x ∗, 

such that it maximize z(x ∗) ′ ˆ θ . One then applies another nonlinear 

solver for min or max { z ( x ∗) ′ θ} subject to θ ∈ C . Peterson (1993) 

argued that solving max x ′ x = r 2 { z(x ) ′ ˆ θ ± C α(z(x ) ′ V z(x )) 
1 
2 } in reality 

is much more manageable than solving Eq. (1) . However, his ap- 

proach utilizes the property that z ( x ) ′ θ is linear in θ which is an 

unrealistic assumption for multivariate response problems in many 

situations. It is usually highly nonlinear in both θ and x in the de- 

sirability function. 

2.2. Confidence intervals for a multi-response ridge path 

A general multi-response problem can be written as 

y i = f (x, θi ) + ε i (2) 

for i = 1 , 2 , . . . , p, where y i is the response vector, x = 

(x 1 , x 2 , . . . , x k ) is input variable vector, θ i is the vector of model 

parameters, and the ε i is random error term, typically assumed to 

be N (0, σ 2 ). The model function f ( x , θ i ) represents the functional 

relation between the i th response and the input variables. 

The parameters θ are usually estimated by fitting multivariate 

linear regression models in the matrix form (see, e.g., Arnold, 1981 , 

p. 349), 

Y ∼ N n,p (X �, �) , (3) 

where n is the number of independent experiment runs, and m is 

the number of response variables in each run, with a fixed covari- 

ance matrix �. The matrices Y , X and � are the response matrix 

( n × p ), design matrix ( n × m ) and parameter matrix ( m × p ), re- 

spectively. 

The optimization for a multi-response issue is to find a set of 

operating conditions x ∗ that optimizes all responses in the given 

ranges. Many methods have been proposed for optimization of 

multiple responses ( Bera & Mukherjee, 2015; Kim & Lin, 2006 ). 

See, for examples, the generalized distance measure ( Khuri & Con- 

lon, 1981 ), and the squared error loss approach ( Ames, Mattucci, 

Macdonald, Szonyi, & Hawkins, 1997; Pignatiello, 1993; Vining, 

1998 ). The most popular approach is probably the desirability func- 

tion. The desirability function ( Derringer & Suich, 1980; Harring- 

ton, 1965; He, Zhu, & Park, 2012; Jeong & Kim, 2009 ) transforms 

an estimated response y i to a scale free value d i ( ·) ∈ [0, 1], called a 

desirability. The overall desirability function is then defined as the 

geometric mean 

D (x, θ ) = 

( 

m ∏ 

i =1 

d i ( ̂  y i ) 

) 1 /m 

. (4) 

Kim and Lin (20 0 0) used an exponential form of the desirability 

function and illustrated its application to the simultaneous opti- 

mization of mechanical properties of steel. This approach also con- 

sidered the predictive of every individual response surface model. 

In general, any reasonable desirability function can be used here, 

as long as it is continuous and differentiable. Following Ding et al. 

(2005) , we adapt the desirability functions of Gibb, Carter, and My- 

ers (2001) , 

d i ( ̂  y i ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[ 
1 + e 

− E(y i ) −a i 
b i 

] −1 

if y i is LTB ;

e 
−0 . 5 

(
E(y i ) −a i 

b i 

)2 

if y i is NTB ;[ 
1 + e 

E(y i ) −a i 
b i 

] −1 

if y i is STB . 

(5) 

For the nominal-the-best (NTB) case, a i is the target value of re- 

sponse, and b i = 

δi √ 

−2 ln (γi ) 
is to control the spread of the func- 

tion, where γ i ∈ (0, 1). For the larger-the-better (LTB) or the 

smaller-the-better (STB) case, a i = 

y max 
i 

−y min 
i 

2 and b i = 

y max 
i 

−y min 
i 

2 ln ( 
1 −γi 
γi 

) 
, 

where y max 
i 

> y min 
i 

, and γ i ∈ (0, 1). The values of δi and γ i can 

be determined via the guideline given by Gibb et al. (2001) . 

Ding et al. (2005) developed a large-sample simultaneous con- 

fidence interval for a multi-response ridge path based on the de- 

sirability function. They defined the multi-response ridge path as 

the plot of g ( θ , r ) vs. radius r , where 

g(θ, r) = max 
x ′ x = r 2 

D (θ, x ) , (6) 

Assuming that x 0 = x 0 (θ, r) = arg max x ′ x = r 2 D (x, θ ) is unique for 

each r , Ding et al. (2005) construct 100(1 − α)% asymptotic simul- 

taneous confidence intervals for g ( θ , r ) which have the form of [
e L 

1 + e L 
, 

e U 

1 + e U 

]
, (7) 

where [ L, U] = log it (g( ̂  θ, r)) ± z α/ 2 q ̂  c (r) , where z α/2 q is the upper 

α/2 q critical value of standard normal distribution, q is the num- 

ber of radii. ˆ c (r) is the estimated standard error of logit (g( ̂  θ, r)) , 

and ˆ c (r) 2 = 

D θ ( ̂ x 0 , ̂
 θ ) ′ ( ̂ �⊗(X ′ X ) −1 ) D θ ( ̂ x 0 , ̂

 θ ) 

(D ( ̂ x 0 , ̂
 θ )(1 −D ( ̂ x 0 , ̂

 θ )) 2 
, in which ˆ x 0 = x 0 ( ̂  θ, r) . Lo- 

gistic regression is popularly used in many areas, especially in bio- 

science (see Hosmer and Lemeshow (2005) , for example). This re- 

sults a Bonferroni’s z type confidence band, since the critical value 

is based on Bonferroni’s inequality. 
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