
ARTICLE IN PRESS
JID: EOR [m5G;February 16, 2016;20:34]

European Journal of Operational Research 000 (2016) 1–10

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Innovative Applications of O.R.

An approximate dynamic programming approach for improving

accuracy of lossy data compression by Bloom filters

Xinan Yang a,∗, Alexei Vernitski a, Laura Carrea b,c

a Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
b Department of Meteorology, University of Reading, Reading RG6 6BB, UK
c School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park Colchester CO4 3SQ, UK

a r t i c l e i n f o

Article history:

Received 27 January 2015

Accepted 20 January 2016

Available online xxx

Keywords:

Lossy compression

Bloom filter

Integer linear program

Approximate dynamic programming

Heuristics

a b s t r a c t

Bloom filters are a data structure for storing data in a compressed form. They offer excellent space and

time efficiency at the cost of some loss of accuracy (so-called lossy compression). This work presents

a yes–no Bloom filter, which as a data structure consisting of two parts: the yes-filter which is a stan-

dard Bloom filter and the no-filter which is another Bloom filter whose purpose is to represent those

objects that were recognized incorrectly by the yes-filter (that is, to recognize the false positives of the

yes-filter). By querying the no-filter after an object has been recognized by the yes-filter, we get a chance

of rejecting it, which improves the accuracy of data recognition in comparison with the standard Bloom

filter of the same total length. A further increase in accuracy is possible if one chooses objects to include

in the no-filter so that the no-filter recognizes as many as possible false positives but no true positives,

thus producing the most accurate yes–no Bloom filter among all yes–no Bloom filters. This paper stud-

ies how optimization techniques can be used to maximize the number of false positives recognized by

the no-filter, with the constraint being that it should recognize no true positives. To achieve this aim,

an Integer Linear Program (ILP) is proposed for the optimal selection of false positives. In practice the

problem size is normally large leading to intractable optimal solution. Considering the similarity of the

ILP with the Multidimensional Knapsack Problem, an Approximate Dynamic Programming (ADP) model is

developed making use of a reduced ILP for the value function approximation. Numerical results show the

ADP model works best comparing with a number of heuristics as well as the CPLEX built-in solver (B&B),

and this is what can be recommended for use in yes–no Bloom filters. In a wider context of the study

of lossy compression algorithms, our research is an example showing how the arsenal of optimization

methods can be applied to improving the accuracy of compressed data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In information technology, lossy compression is a data compres-

sion method that reduces the size of the representation at the cost

of the loss of some accuracy at the decompression time. In ex-

change for losing accuracy in representation, lossy data structures

not only store all information in constant space but also respond

to membership queries in constant time. Examples of lossy data

structures include skip lists (Pugh, 1989), lossy dictionaries (Pagh

& Rodler, 2001) and several hashing techniques.

∗ Corresponding author. Tel.: +01206 872787.

E-mail address: xyangk@essex.ac.uk, sibylnan@163.com (X. Yang).

1.1. Bloom filter

The Bloom filter is one of lossy methods of storing compressed

data, introduced in Bloom (1970). The kind of data that Bloom fil-

ter is especially suitable for are sets. Given a set, a Bloom filter

can be produced which represents the set in a compressed form. It

can then be queried in the sense that there is an algorithm which,

given an object and a Bloom filter representing a set, decides

whether the object is or is not an element of the set. The querying

algorithm is very efficient and works extremely fast compared to

standard algorithms of accessing compressed data (one of the rea-

sons why this algorithm is fast is that it contains many operations

which are performed in parallel and that it is easy to implement

in hardware) (Tarkoma, Rothenberg, & Lagerspetz, 2012a). The size

of the Bloom filter can be very small compared to standard ways

of compressing data, which is a major advantage of Bloom fil-

ters. Nevertheless, there is also an important disadvantage: Bloom

http://dx.doi.org/10.1016/j.ejor.2016.01.042

0377-2217/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: X. Yang et al., An approximate dynamic programming approach for improving accuracy of lossy data compres-

sion by Bloom filters, European Journal of Operational Research (2016), http://dx.doi.org/10.1016/j.ejor.2016.01.042

http://dx.doi.org/10.1016/j.ejor.2016.01.042
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:xyangk@essex.ac.uk
mailto:sibylnan@163.com
http://dx.doi.org/10.1016/j.ejor.2016.01.042
http://dx.doi.org/10.1016/j.ejor.2016.01.042


2 X. Yang et al. / European Journal of Operational Research 000 (2016) 1–10

ARTICLE IN PRESS
JID: EOR [m5G;February 16, 2016;20:34]

filters only represent data approximately, and frequently the query-

ing algorithm gives an incorrect answer to the question about the

membership of an object in the set represented by a Bloom filter.

The broad area of applicability of Bloom filters, due to their

excellent space and time efficiency, is either in low-performance

hardware or for tasks which must be performed extremely fast

and speed is slightly more important than accuracy. Bloom filters

have a range of uses in information technology (Broder & Mitzen-

macher, 2002; Tarkoma, Rothenbergand, & Lagerspetz, 2012b), from

hardware implementations to software applications domain, where

it was first conceived to perform space and time efficient dictio-

nary lookups (Bloom, 1970). Broder and Mitzenmacher (2002) have

coined the Bloom filter principle: ‘Whenever a list or set is used,

and space is at a premium, consider using a Bloom filter if the

effect of false positives can be mitigated’. To give just one exam-

ple, Bloom filters can be used for routing in computer networks:

in this application, a path which a message must follow is repre-

sented by a Bloom filter, namely, as a union of those links between

computers which together constitute the path. It is appropriate to

use Bloom filters in this application because each computer along

the path must decide where to forward the message very quickly

(literally with the speed of light, assuming that the links between

computers are optical cables).

Calculating a Bloom filter of one object is a preliminary stage

before building or querying a Bloom filter representing a set of ob-

jects. Assume that there is an algorithm which takes any object as

its input and produces a binary array of a fixed length G, in which

H bits are equal to 1 and other bits are equal to 0. We refer to this

array as the Bloom filter of the object. The purpose of the Bloom

filters of objects is to serve as uniform labels for each object which

may interest us. Informally speaking, the Bloom filters of objects

may be likened to bar-codes glued to every object. We denote the

Bloom filter of an object s by η(s).

Given a set S, the Bloom filter of S can be computed as the

bitwise disjunction of the Bloom filters of the elements in S; in

other words, the Bloom filter of the set S is defined as a binary

array of length G, and for each j = 1, . . . , G the jth bit is calculated

as follows: if in every η(s), where s ∈ S, the jth bit is 0 then the

jth bit of the Bloom filter is 0; otherwise, if in at least one η(s) the

jth bit is 1 then the jth bit of the Bloom filter is 1. We denote the

Bloom filter of a set S by β(S).

Given an object s and a Bloom filter β(S), querying it to de-

termine whether s is an element of S is done as follows. For each

j = 1, . . . , G if the jth bit of η(s) is less than or equal to the jth bit

of β(S) then we say that s is recognized1 by the Bloom filter β(S)

as belonging to the set S . In an ideal world, one would like to be

able to claim that s is recognized as belonging to S if and only if

s is an element of S . However, this is not so. Due to the defini-

tion of a Bloom filter, if s is an element of S then s is recognized

by β(S); but the converse is not true: not necessarily an object s

recognized by β(S) is an element of S . This kind of error is called

false positives, in the sense that the Bloom filter query recognizes

the element as belonging to the set, but should not do it.

A number of approaches have been proposed to reduce the

number of false positives in Bloom filters. The number H of po-

sitions equal to 1 can be varied (Kirsch & Mitzenmacher, 2008).

Generalizations of the standard Bloom filter have also been con-

sidered, such as the yes–no Bloom filter (Vernitski, Carrea, & Reed,

2015) that is further studied in this paper, the retouched Bloom fil-

ter (Donnet, Baynat, & Friedman, 2006), the counting Bloom filter

(Guo, Liu, Li, & Yang, 2010), the power of two choices (Lumetta

& Mitzenmacher, 2007), the optihash (Carrea, Vernitski, & Reed,

1 It is also convenient to use the pure-mathematics term ‘covered’, that is, s is

covered by β(S), thus stressing that β(S) is a lattice join (or, in another interpre-

tation, a set union) of the Bloom filters of the elements of S .

2014) or partitioned hashing (Hao, Kodialam, & Lakshman, 2007).

Both the standard Bloom filter and its generalizations listed above

can work in the use scenario in which some false positives and

some false negatives are allowed. Nevertheless, in this paper we

concentrate on the construction of yes–no Bloom filter under the

standard use scenario in which we allow some false positives (try-

ing to minimize their number) and do not allow any false negatives

(for example, in the application to routing this approach means

that the message will definitely be delivered to the right recipi-

ent but perhaps also sent to some other computers, thus creating

some unnecessary traffic in the network).

1.2. Yes–no Bloom filter

This paper studies a yes–no Bloom filter (Vernitski et al., 2015),

which is our new generalization of the standard Bloom filter which

actively reduces the number of false positives at the stage of build-

ing the Bloom filter. Let us start with a fictitious and simplified but

realistic use scenario. Suppose the management of an airport in-

stalls CCTV cameras whose output is automatically compared with

photographs of 100 known terrorist suspects. Suppose these pho-

tographs are stored in a compressed form as a Bloom filter. Due to

Bloom filters’ efficiency, even low-performance hardware can effec-

tively compare faces of people in the airport with the faces of the

suspects. Then, if the Bloom filter recognizes a face, the security

staff is called to look at the person and make a decision. As we

have discussed, Bloom filters produce false positives; therefore, the

security staff will be called more often than needed. In particular,

suppose that out of all the employees working in the airport, 300

people have faces that trigger false positives. We can considerably

reduce unnecessary checks and nuisance if we actively indicate to

the Bloom filter that these specific objects are recognized incor-

rectly and should not be recognized.

A yes–no Bloom filter consists of two Bloom filters, one called

a yes-filter and the other called a no-filter.2

Now we shall define the algorithms for building the yes–no

Bloom filter of a set and for querying a yes–no Bloom filter. We

assume that each object has two Bloom filters corresponding to it:

the yes-filter of length G+ and the no-filter of length G−. Given an

element s, we shall denote its yes-filter by η+(s) and its no-filter

by η−(s).

Consider a set S and another set T such that that the two sets

do not overlap. The set S is the one that we want to store in a

compressed form, and the set T is a set whose elements are likely

to be queried but should not be recognized as elements of S . (In

the example above, S is the set of suspects and T is the set of

airport employees.) Build the yes-filter β+(S) of S as the bitwise

disjunction of all η+(s), where s ∈ S; in other words, β+(S) is the

standard Bloom filter built from all arrays η+(s). The Bloom fil-

ter β+(S) will have false positives, including some which are con-

tained in T ; let us denote the subset of T consisting of false pos-

itives of β+(S) by F . (In the example above, F is the set of those

employees whose faces are recognized by the Bloom filter.) Then

the second, more interesting stage begins: we build the no-filter

β−(S) of S so that β−(S) recognizes as many as possible elements

of F but none of the elements of S . (As we shall see later in the

paper, unlike building a standard Bloom filter or the yes-filter, this

stage involves flexibility as to which elements of F should be in-

cluded in β−(S), and, therefore, turns into a meaningful optimiza-

tion problem.)

2 Slightly more general approaches are also possible, which involve more than

two Bloom filters, but this particular choice in the design of the structure is con-

sidered for the purposes of this paper. See the conclusion for suggestions of further

research.

Please cite this article as: X. Yang et al., An approximate dynamic programming approach for improving accuracy of lossy data compres-

sion by Bloom filters, European Journal of Operational Research (2016), http://dx.doi.org/10.1016/j.ejor.2016.01.042

http://dx.doi.org/10.1016/j.ejor.2016.01.042


Download English Version:

https://daneshyari.com/en/article/6895682

Download Persian Version:

https://daneshyari.com/article/6895682

Daneshyari.com

https://daneshyari.com/en/article/6895682
https://daneshyari.com/article/6895682
https://daneshyari.com

