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a b s t r a c t 

In classical scheduling problems it is common to assume that the due dates are predefined parameters 

for the scheduler. In integrated systems, however, due date assignment and scheduling decisions have to 

be carefully coordinated to make sure that the company can meet the assigned due dates. Thus, a huge 

effort has been made recently to provide tools to optimally integrate due date assignment and scheduling 

decisions. In most cases it is common to assume that the assigned due date(s) are not restricted. However, 

in many practical cases, assigning due dates too far into the future may violate early agreements between 

the manufacturer and his customers. Thus, in this paper we extend the current literature to deal with 

such a constraint. This is done by analyzing a model that integrates due date assignment and scheduling 

decisions where each job may be assigned a different due date whose value cannot exceed a predefined 

threshold. The objective is to minimize the total weighted earliness, tardiness and due date assignment 

penalties. We show that the problem is equivalent to a two stepwise weighted tardiness problem, and 

thus for a large set of special cases it is strongly N P -hard, even when the scheduling is done on a 

single machine. We then provide several special cases that can be solved in polynomial time, and present 

approximation results for a slightly modified (and equivalent) problem on various machine settings. 

© 2015 Elsevier B.V. All rights reserved. 

1. Introduction 

Objective functions that include both earliness and tardiness 

penalties are now very popular in the scheduling literature due to 

the increasing interest in Just-in-Time ( JIT ) production in industry. 

When due dates are given in advance the most common objec- 

tive in a JIT scheduling environment is to find a schedule S that 

minimizes 

Z(S ) = 

n ∑ 

j=1 

(
β j E j + γ j T j 

)
, (1) 

where J = { 1 , . . . , n } is the set of n jobs to be scheduled, and for 

any job j ∈ J , d j is the due date, and β j and γ j are nonnegative pa- 

rameters representing the per unit earliness and tardiness costs, 

respectively. Moreover, for a given schedule S , C j represents the 

completion time of job j ; E j = max 
{

0 , d j − C j 
}

represents the ear- 

liness of job j ; and T j = max 
{

0 , C j − d j 
}

represents the tardiness of 

job j . Scheduling problems with the objective of minimizing Z ( S ) in 

(1) are usually referred to as earliness-tardiness scheduling problems . 

Such problems arise in a scheduling environment where customers 

are not interested in receiving their jobs either earlier or later than 
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the due date. Thus, if a job is finished prior its due date, it has to 

be held in inventory until that date. Consequently, this job incurs 

an earliness cost depending on the length of time it is held in in- 

ventory. This earliness penalty cost can result from deterioration, 

storage, insurance, etc. On the other hand, if a job is delivered after 

the due date, it incurs a tardiness cost that depends on how tardy 

the job is. The tardiness penalty can result from customer dissatis- 

faction, contract fines, and exposure to potential loss of reputation 

( Chen, 1996 ). 

Earliness-tardiness scheduling problems have attracted the at- 

tention of many researchers (see, e.g., Sundararaghavan and 

Ahmed, 1984; Hall and Posner, 1991; Hall, Kubiak, and Sethi, 1991; 

Hassin and Shani, 2005; Davis and Kanet, 1993; Sivrikaya-Serifo ̆glu 

and Ulusoy, 1999 and Sourd and Kedad-Sidhoum, 2008 ). A survey 

on those problems can be found in Baker and Scudder (1990) and 

Lauff and Werner (2004) . In all these papers, the main assumption 

is that due date quotation and scheduling decisions are made sep- 

arately. Thus, due dates are given in advance as predefined param- 

eters. In an integrated (centralized) system, however, due dates are 

determined by taking into account the ability to meet them. This is 

why an increasingly large number of recent studies view due date 

assignment ( DDA ) as part of the scheduling process and show how 

the ability to control due dates can be a major factor in improv- 

ing system performance (see Gordon, Proth, and Strusevich, 2004 

and Kaminsky and Hochbaum, 2004 for extensive surveys on this 

subject). 
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In a JIT scheduling environment where both due date assign- 

ment and scheduling decisions are integrated, it is common to in- 

clude a due date assignment penalty within the objective func- 

tion. This penalty reflects the fact that promising delivery dates too 

far into the future may force a company to offer price discounts 

in order to retain its business. In fact, the most common objec- 

tive in the scheduling literature involving DDA decisions (see, e.g., 

Seidmann, Panwalkar, and Smith, 1981; Panwalkar, Smith, and Sei- 

dmann, 1982; Chen, 1996; Shabtay and Steiner, 2006 and Shabtay 

and Steiner, 2008; Mosheiov and Yovel, 2006; Li, Ng, and Yuan, 

2011 and Drobouchevitch and Sidney, 2012 ) is to find a schedule 

S and a set of due dates d = (d 1 , d 2 , . . . , d n ) that minimizes 

Z(S, d ) = 

n ∑ 

j=1 

(
α j max 

{
0 , d j − A j 

}
+ β j E j + γ j T j 

)
, (2) 

where for job j ∈ J , αj is a nonnegative parameter representing the 

per unit lead time cost, and A j represents the lead time that is con- 

sidered to be acceptable (and thus there is no lead time cost if the 

due date is set to be less than or equal to A j ). 

Several methods to assign due dates have been considered in 

the literature. The most commonly used ones are (i) the common 

DDA method (usually referred to as the CON DDA method), where 

all the jobs are assigned the same due date; (ii) the slack due date 

assignment method (usually referred to as the SLK DDA method), 

where the jobs are given an equal flow allowance that reflects an 

equal waiting time; and (iii) the unrestricted due date assignment 

method (usually referred to as the DIF DDA method), where each 

job can be assigned a different due date. A common assumption is 

that the assigned due dates (in the DIF method) or the common 

due date or slack values (in the CON and SLK methods) are not 

restricted. However, in many practical cases, assigning a due date 

too far into the future may not be acceptable or may even violate 

an earlier agreement between the manufacturer and its customers. 

Thus, in this paper we extend the literature devoted to the DIF DDA 

by including a limitation on the assigned due dates. We do this 

by analyzing a set of scheduling problems in which the objective 

is to find a schedule S and a set of due dates d = (d 1 , d 2 , . . . , d n ) 

that minimizes the objective in (2) , subject to the condition 

that 

d j ≤ d j (3) 

for j = 1 , . . . , n, where d j represents an upper limit on the as- 

signed due date for job j . 

For ease of presentation, we use the classical X | Y | Z three-field 

notation introduced by Graham, Lawler, Lenstra, and Rinnooy Kan 

(1979) when referring to each scheduling problem. The X field de- 

scribes the machine environment, with X ∈ {1, Pm , Qm , Rm , Fm , Jm , 

Om }, where X = 1 implies that the scheduling is done on a single 

machine; X = P m implies that the scheduling is done on a set of m 

identical parallel machines; X = Qm implies that the scheduling is 

done on a set of m uniform machines working in parallel; X = Rm 

implies that the scheduling is done on a set of m unrelated ma- 

chines working in parallel; and X = F m, X = Jm and X = Om refer 

to flow-shop, job-shop and open-shop scheduling systems, respec- 

tively. In all the above cases, it is assumed that m is fixed, i.e., that 

the number of machines in the shop is not part of the instance. 

If, on the other hand, the number of machines is part of the in- 

stance, we remove the “m 

′ ′ from the X field, such that, for example, 

X = P indicates that the scheduling is done on a set of m identical 

parallel machines, where m is not fixed. The Y field includes the 

set of job-processing characteristics and constraints. In our frame- 

work Y = { Y , DIF , d j ≤ d j } , where DIF implies that the due dates 

are assignable according to the DIF DDA method, and d j ≤ d j im- 

ply that the assigned due date for job j cannot exceed d j . Y is 

the set of all other job-processing characteristics and constraints 

(excluding DIF and d j ≤ d j ). This set ( Y ) may include entries such 

as r j which means that jobs may not be available from time zero; 

pmtn which means that preemption is allowed; prec which means 

that there are precedence constraints between jobs; and sp-graph 

which means that there is a precedence constraint relation that 

can be represented by a series-parallel graph. The Z field contains 

the objective function for the scheduling problem, and it will usu- 

ally refer to the one defined in (2) . 

Seidmann et al. (1981) were the first to study scheduling 

problems using the DIF DDA method. They focus on the case 

where (i) the scheduling is done on a single machine; (ii) the 

per unit earliness, tardiness and due date assignment costs 

are job-independent (that is α j = α, β j = β and γ j = γ for 

j = 1 , . . . , n ); (iii) the acceptable lead times are job-independent 

(that is A j = A for j = 1 , . . . , n ); and (iv) there is no limitations 

on the value of the assigned due dates. They showed that the 

resulting 1 | DIF | ∑ n 
j=1 (α max { 0 , d j − A } + βE j + γ T j ) problem is 

solvable in O ( n log n ) time. Shabtay and Steiner (2008) extended 

the analysis in Seidmann et al. (1981) to capture various multi- 

machine settings as well. They showed that for any machine 

environment X , the X| DIF | ∑ n 
j=1 (α max { 0 , d j − A } + βE j + γ T j ) 

problem is equivalent to the X 
∣∣d j = A 

∣∣w 

∑ n 
j=1 T j problem, 

where A is a fixed common due date for all jobs and 

w = min { α, γ } . Based on this equivalence they concluded that 

( i ) problems P m | DIF | ∑ n 
j=1 (α max { 0 , d j − A } + βE j + γ T j ) and 

Qm | DIF | ∑ n 
j=1 (α max { 0 , d j − A } + βE j + γ T j ) are ordinary N P - 

hard; ( ii ) the P m | DIF | ∑ n 
j=1 

(
αd j + βE j + γ T j 

)
problem is solvable 

in O ( n log n ) time; ( iii ) the Rm | DIF | ∑ n 
j=1 

(
αd j + βE j + γ T j 

)
is solv- 

able in O ( n 3 ) time; and that ( i v ) problems F 2 | DIF | ∑ n 
j=1 (αd j + 

βE j + γ T j ) and O 2 | DIF | ∑ n 
j=1 (αd j + βE j + γ T j ) are strongly 

N P -hard. Note, however, that based on the equivalence be- 

tween the X | DIF | ∑ n 
j=1 

(
α max 

{
0 , d j − A 

}
+ βE j + γ T j 

)
and 

X 
∣∣d j = A 

∣∣w 

∑ n 
j=1 T j problems ( w = min { α, γ } ), when either α = 0 

or γ = 0 , we have that the objective value is equal to zero in- 

dependent of the job schedule. The reason is that when α = 0 , 

by setting d j = C j for j = 1 , . . . , n we can obtain a solution with 

a zero value, which is independent of the actual C j values (i.e., 

independent of the job schedule). Similarly, when γ = 0 we can 

obtain a solution with a zero objective value by setting d j = 0 for 

j = 1 , . . . , n . Here as well the result is independent of the actual 

schedule. 

Shabtay and Steiner (2006) studied the extended version 

of the single machine problem, where the per unit ear- 

liness, tardiness and due date assignment costs are job- 

dependent as is the acceptable lead time. They proved that 

the resulting 1 | DIF | ∑ n 
j=1 

(
α j max 

{
0 , d j − A j 

}
+ β j E j + γ j T j 

)
pr ob- 

lem is equivalent to the well-known 1 || ∑ n 
j=1 w j T j problem 

with w j = min 

{
α j , γ j 

}
and fixed due dates d j = A j for j = 

1 , . . . , n . Based on this and on the strongly N P -hardness re- 

sult for the 1 || ∑ n 
j=1 w j T j problem (see Lawler, 1977 ), they 

concluded that the 1 | DIF | ∑ n 
j=1 

(
α j max 

{
0 , d j − A j 

}
+ β j E j + γ j T j 

)
problem is strongly N P -hard. Moreover, they showed that the 

1 | DIF | ∑ n 
j=1 

(
α j max 

{
0 , d j − A j 

}
+ β j E j + γ j T j 

)
problem is solvable 

in O ( n log n ) time when either A j = 0 or when A j = A and w j = 

min 

{
α j , γ j 

}
= w for j = 1 , . . . , n . 

Our main objective in this paper is to analyze the 

X 
∣∣Y , DIF , d j ≤ d j 

∣∣∑ n 
j=1 

(
α j max 

{
0 , d j − A j 

}
+ β j E j + γ j T j 

)
prob- 

lem for various settings of X and Y . Owing to the results in 

Shabtay and Steiner (2006) above this problem is strongly N P - 

hard even when X = 1 , Y = ∅ and d j ≥ �n 
j=1 

p j . Thus, we are 

mainly interested in exploring the borderline between easy and 

hard special cases of the problem, and providing approximation 

results for the hard cases. 
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