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In this note we first show that the centroid (or centre of gravity) gives in value a (σ + 1) -approximation 

to any continuous single facility minisum location problem for any gauge with asymmetry measure σ , 

and thus a 2-approximate solution for any norm. 

On the other hand for any gauge the true minimum point (the 1-median) remains within a bounded set 

whenever a fixed proportion of less than half of the total weight of the destination points is moved to 

any other positions. It follows that the distance between the centroid and the 1-median may be arbitrary 

close to half the diameter of the destination set. 
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1. Introduction 

The Fermat–Weber problem, or single facility minisum Eu- 

clidean location problem, is probably the most studied and dis- 

cussed continuous location model, see e.g. the survey ( Drezner, 

Klamroth, Schöbel, & Wesolowsky, 2003 ). In its modern form it is 

stated as follows: 

Given a finite set of destination points A ⊂ R 

d and weights 

w a > 0 ( a ∈ A ), find the point x minimizing the sum of weighted 

(Euclidean) distances to all points of A , i.e. solve 

min 

{ ∑ 

a ∈ A 
w a ‖ a − x ‖ x ∈ R 

d 

} 

(1) 

where we assume for notational simplicity and without loss of 

generality that 
∑ 

a ∈ A w a = 1 . Such a point is also called a Weber- 

point or (Euclidean) 1-median. 

It was shown in Bajaj (1988) that no closed algebraic form can 

solve it in general. Therefore it should be solved through iterative 

techniques from convex optimisation, the most popular for this 

particular problem being the almost centenary method developed 

by Weiszfeld ( Weiszfeld, 1937; Weiszfeld & Plastria, 2009 ), as ex- 

plained in detail in Plastria (2011) . 

In 1937, Keefer (according to Eilon, Watson-Gandy, and 

Christofides (1971) —we were unable to verify this information) in- 
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troduced the so-called centroid (or centre of gravity) method , stat- 

ing that the solution would be 

g = 

∑ 

a ∈ A 
w a a (2) 

Since then, till today, many books on Operations Management, in- 

cluding e.g. Weida, Richardson, and Vazsonyi (2001) (note that 

Vazsonyi = Weiszfeld, see Vazsonyi, 2002 ) propose this centroid so- 

lution as optimal. This is totally wrong. The centroid g minimizes 

another objective: the sum of weighted squared Euclidean dis- 

tances, as is easily established, see e.g. Plastria (2011) . Attempts to 

banish this error have been numerous, but seem not to have been 

sufficiently heard and still continue to be felt necessary, as exem- 

plified by the writings of Eilon et al. (1971) ; Schärlig (1973) ; Vergin 

and Rogers (1967) , and others, up to much more recently ( Gehrlein 

& Pasic, 2009 ). 

The difficulty to convince the operations management commu- 

nity of this error should probably be sought for a good part in the 

fact that in simple examples the centroid seems to give a quite 

satisfactory approximation of the optimal solution, and, being so 

much easier to calculate, is therefore preferred. This argument is 

for example central to the recent paper ( Kuo, 2010 ) that advocates 

the centroid as a good heuristic solution, and attempts to show so 

experimentally using randomly generated data, concluding that the 

approximation grows better and better with increasing number of 

destinations. This is however no proof of goodness in general at 

all. In fact it only illustrates the following rather evident fact about 

the quite exceptional case where the destinations admit a symme- 

try centre. 
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Lemma 1. If the destinations and their weights admit a symmetry 

centre, i.e. there exists a point s such that for each a ∈ A the sym- 

metric point a s = s + (s − a ) ∈ A and has the same weight ( w a = w a s ), 

then s is at the same time an optimal solution to (1) and the centre 

of gravity g , as well as being a point minimizing the weighted sum of 

any fixed power ( ≥ 1 ) of distances to the destinations. 

Proof. For any p ≥ 1 the function f p (x ) = 

∑ 

a ∈ A w a ‖ a − x ‖ p is a 

convex function of x . Thanks to the assumed existence of s and 

the symmetry of the Euclidean norm we also have the symmetry 

property that for any x ∈ R 

d we have 

f p (x s ) = f p (s + (s − x )) (3) 

= 

∑ 

a ∈ A 
w a ‖ a − (s + (s − x )) ‖ 

p (4) 

= 

∑ 

a ∈ A 
w a ‖ x − (s + (s − a )) ‖ 

p (5) 

= 

∑ 

a ∈ A 
w a s ‖ a s − x ‖ 

p (6) 

= 

∑ 

a s ∈ A 
w a s ‖ a s − x ‖ 

p (7) 

= f p (x ) (8) 

But s = 0 . 5 x + 0 . 5 x s for any x , so by convexity f p (s ) ≤ 0 . 5 f p (x ) + 

0 . 5 f p (x s ) = f p (x ) , showing that s minimizes f p . 

Taking p = 1 we obtain that s is an optimal solution to (1) , and 

taking p = 2 we obtain s = g (which, evidently, may be obtained 

more directly by 2 g = 

∑ 

a ∈ A w a a + 

∑ 

a s ∈ A w a s a 
s = 

∑ 

a ∈ A w a (a + a s ) = 

2 s ). �

Thus, when the random generation of coordinates and weights 

is done using a uniform distribution (as is not said, but implicit in 

Kuo (2010) ) the sample test data obtained approximates a symmet- 

ric destination set better and better as the sample size increases. 

And therefore it should be expected that both g and the Weber 

point will converge to the same asymptotic symmetry centre of 

the destinations. 

So, let us have a deeper look at the question how bad the cen- 

troid can be for ‘solving’ single facility minisum location problems. 

As Euclidean distance is a rather restrictive view on modelling real 

world distances, see e.g. Plastria (1995) , we develop our analysis in 

the much more general setting where distance is measured by an 

arbitrary finite gauge, the generalisation of a norm that includes 

possible asymmetry. 

2. Comparison of the 1-median and centroid in value 

A first and most common way to check the fit of a solution is 

to compare it in value to the optimal. 

Given any gauge ν on R 

d we consider the following single fa- 

cility minisum location problem (see e.g. Plastria, 2009 for general 

properties of norms and gauges). 

min 

{ 

f (x ) = 

∑ 

a ∈ A 
w a ν(a − x ) x ∈ R 

d 

} 

(9) 

and call any optimal solution m a 1-median. It is well known (see 

e.g. Pelegrin, Michelot, & F.Plastria, 1985 ) that multiple optimal so- 

lutions might exist, but only when A is aligned and/or ν is not 

round (i.e. its unit ball is not strictly convex). 

We investigate the difference between f ( g ) and f ( m ). 

Recall that for the gauge ν we have the triangle inequality, in 

particular ν(w ) − ν(v ) ≤ ν(w − v ) for any v , w ∈ R 

d . Due to possi- 

ble asymmetry of ν the left-hand side of this inequality may not 

be inversed. Using the skewness σ of the gauge ν , introduced in 

Plastria (2009) as 

σ
def = max { ν(−x ) ν(x ) = 1 } (10) 

we have ν(−y ) ≤ σν(y ) for any y ∈ R 

d and so 

∀ v , w ∈ R 

d : | ν(v ) − ν(w ) | ≤ σν(w − v ) . (11) 

Note that σ ≥ 1, with equality only in case of symmetry, so when 

ν is a norm. The easiest example of a gauge with skewness σ > 1 

is the one-dimensional gauge νσ defined on R as 

νσ (x ) 
def = 

{
x when x ≥ 0 

−σ x when x < 0 

(12) 

Equality in the extended triangle inequality (11) is only possible 

when v , w and w − v lie on a same (flat) face of ν ’s unit ball B ν , 

meaning either that v = w or that ν is not round: there exists some 

p � = 0 such that ν(v ) = 〈 p ; v 〉 , ν(w ) = 〈 p ; w 〉 and ν(w − v ) = 

〈 p ; w − v 〉 . 
Lemma 2 (Lipschitz property) . For all x, y ∈ R 

d we have | f (y ) −
f (x ) | ≤ σν(y − x ) 

Proof. 

| f (y ) − f (x ) | = 

∣∣∣∣∣∑ 

a ∈ A 
w a (ν(a − y ) − ν(a − x )) 

∣∣∣∣∣ (13) 

≤
∑ 

a ∈ A 
w a | ν(a − y ) − ν(a − x ) | (14) 

by (11) ≤
∑ 

a ∈ A 
w a σν(y − x ) (15) 

= σν(y − x ) (16) 

We therefore have 

Theorem 3. f (m ) ≤ f (g) ≤ (σ + 1) f (m ) 

Proof. The first inequality holds because m is a minimum of f . 

Using Lemma 2 for y = g = 

∑ 

a ∈ A w a a we obtain for x = m 

f (g) − f (m ) ≤ σν(g − m ) (17) 

= σν

( ∑ 

a ∈ A 
w a a − m 

) 

(18) 

= σν

( ∑ 

a ∈ A 
w a (a − m ) 

) 

(19) 

≤ σ
∑ 

a ∈ A 
w a ν(a − m ) = σ f (m ) (20) 

It follows that f (g) ≤ (σ + 1) f (m ) . �

The next question is now : can this upper bound of (σ + 1) on 

the approximation factor be reached? 

Theorem 4. If there are at least two different a ∈ A we always have 

f (g) < (σ + 1) f (m ) 

Proof. For an equality f (g) = (σ + 1) f (m ) we would need equali- 

ties instead of inequalities everywhere in the proof of Theorem 3 . 

Now by convexity of ν , inequality (20) only holds if ν is linear 

on the convex hull of the a − m ( a ∈ A ). This would mean that 

there exists a p � = 0 such that for all a ∈ A 

ν(a − m ) = 〈 p; a − m 〉 (21) 
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