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a b s t r a c t 

We study a two-person zero-sum game where the payoff matrix entries are random and the constraints 

are satisfied jointly with a given probability. We prove that for the general random-payoff zero-sum game 

there exists a “weak duality” between the two formulations, i.e., the optimal value of the minimizing 

player is an upper bound of the one of the maximizing player. Under certain assumptions, we show 

that there also exists a “strong duality” where their optimal values are equal. Moreover, we develop two 

approximation methods to solve the game problem when the payoff matrix entries are independent and 

normally distributed. Finally, numerical examples are given to illustrate the performances of the proposed 

approaches. 

© 2015 Elsevier B.V. All rights reserved. 

1. Introduction 

In this paper, we consider the classic two-person zero-sum 

game, i.e., there are only two players where one player wins what 

the other player loses. Without loss of generality, we refer to the 

players as Player I and Player II. Let A = (a i, j ) n ×m 

be the payoff ma- 

trix of a two-person zero-sum game. If Player I plays pure strategy 

i and Player II uses pure strategy j , then the payoff from Player II 

to Player I is a ij . In the game, Player I seeks a mixed strategy to 

maximize his minimum payoff while Player II seeks a mixed strat- 

egy to minimize his maximum loss. In this case, the two-person 

zero-sum game can be mathematically formulated as two linear 

programming (LP) problems: 

For Player I, 

d ∗ := max d 

s.t. min 

y 
(x T Ay : y T e m 

= 1 , y ≥ 0) ≥ d 

x T e n = 1 , x ≥ 0 (1) 

or 

(P 1) d ∗ := max d 

s.t. A 

T x ≥ de m 

x T e n = 1 , x ≥ 0 (2) 
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where e k is a k −dimensional vector with all elements are equal 

to 1. 

For Player II, 

t ∗ := min t 

s.t. max 
x 

(x T Ay : x T e n = 1 , x ≥ 0) ≤ t 

y T e m 

= 1 , x ≥ 0 (3) 

or 

(P 2) t ∗ := min t 

s.t. Ay ≤ te n 

y T e m 

= 1 , y ≥ 0 (4) 

With a deterministic payoff matrix A , the famous von Neumann 

minimax theorem von Neumann (1928) states that the two opti- 

mal values of the two LP problems are equal, i.e., d ∗ = t ∗. However, 

in practice, due to modeling or prediction errors, different kinds of 

uncertainties occur. Therefore, the payoff matrix is unknown in ad- 

vance. In this case, it is natural to model the payoff matrix by con- 

tinuously or discretely distributed random variables, which turns 

the underlying problem into a stochastic optimization problem. If 

the random payoff matrix is replaced by its expectation, then the 

variability of the payoffs is not captured. In this paper, we con- 

sider chance-constrained criteria for determining optimal strategies 

Charnes, Kirby, and Raike (1968) . Each player optimizes his strat- 

egy and return such that the probability of attaining that return 

is at least some given value. In this context, the random-payoff

two-person zero-sum game can be formulated as the following 

stochastic programming problems: 

http://dx.doi.org/10.1016/j.ejor.2015.12.024 

0377-2217/© 2015 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.ejor.2015.12.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.12.024&domain=pdf
mailto:cheng@lri.fr
mailto:janny@se.cuhk.edu.hk
mailto:abdel.lisser@lri.fr
mailto: \ignorespaces lisser@lri.fr
http://dx.doi.org/10.1016/j.ejor.2015.12.024


214 J. Cheng et al. / European Journal of Operational Research 252 (2016) 213–219 

For Player I, 

(P 3) : P ∗ := max 
x,d 

d 

s.t. Pr { A 

T x ≥ de m 

} ≥ α

x T e n = 1 , x ≥ 0 (5) 

For Player II, 

(P 4) : D 

∗ := min 

y,t 
t 

s.t. Pr { Ay ≤ te n } ≥ β

y T e m 

= 1 , y ≥ 0 (6) 

The constraints (5) and (6) are called joint chance constraints. For 

the sake of simplicity, we call the game a chance-constrained game 

hereafter. 

The rest of the paper is organized as follows. In Section 2 , 

we review the literature related to chance-constrained games. In 

Sections 3 and 4 , we investigate the relationship between the best 

payoff of the two players, and derive both weak and strong duality 

results. In Section 5 , we consider the special case where the pay- 

off matrix entries are independent and normally distributed. Two 

approximation methods to solve the problem are given, namely 

a conservative approximation and the other is a relaxed approxi- 

mation. A numerical study is given in Section 6 . Finally, the last 

section contains the conclusions. 

2. Literature review 

Game theory, as a mathematical study on conflict and cooper- 

ation situations, has been widely studied in several fields, namely 

economics, networks, political science and psychology and recently 

computer science. Since von Neumann and Morgenstern (1947) 

developed game theory, this topic has attracted the attention of 

economists, mathematicians and operations researchers. We refer 

the reader to some famous game theory textbooks Dixit, Skeath, 

and Reiley (2014) ; Gibbons (1992) . 

Nash (1950) proved that there exists at least one Nash equilib- 

rium where no player can improve his expected payoff by changing 

his strategy. Peski (2008) presented simple necessary and sufficient 

conditions for the comparison of information structures in zero- 

sum games. In game theory, two-person zero-sum game is one 

of the fundamental problems with two players where one player 

wins what the other one loses. When the payoff matrix is deter- 

ministic, von Neumann (1928) proved that the best payoff of one 

player is equal to the best one of the other player. However, in 

practice, due to modeling or prediction errors, the payoff matrix is 

not known in advance. Stochasticity in game theory can be han- 

dled by at least two different approaches: stochastic optimization 

Blau (1974) ; Cassidy, Field, and Kirby (1972) ; Charnes et al. (1968) 

which considers payoffs as random variables, and fuzzy sets ap- 

proach Aubin (1981) ; Butnariu (1978) ; Xu, Zhao, and Ning (2006) . 

Flesch, Schoenmakers, and Vrieze (2009) studied the product- 

game where there are n − player stochastic games played on a 

product state space. They establish the existence of 0 − equilibria. 

In the case of two-players zero-sum games of this type, they show 

that both players have stationary 0 −optimal strategies. Product- 

games with an aperiodic transition structure were also consid- 

ered in Flesch, Schoenmakers, and Vrieze (2008) . Monroy, Hino- 

josa, Marmol, and Fernandez (2013) considered stochastic cooper- 

ative games where the coalition values are fuzzy. Stochastic lin- 

ear programming games were studied by Ulhan (2015) where the 

uncertainty of the payoffs is determined by a specially struc- 

tured linear program. When each player preferences over ran- 

dom payoffs are represented by a concave functional, the author 

proves that these games have a nonempty core. A computable al- 

gorithm to calculate uniform ε−optimal strategies in two-players 

zero-sum stochastic games was proposed in Solan and Vieille 

(2010) . This approach can be used to construct ε−equilibria algo- 

rithms in various classes of multi-player non-zero-sum stochastic 

games. 

Duality in linear programming can be formulated as a game 

theory problem. In Bot, Lorenz, and Wanka (2010) , the authors 

give the deterministic equivalent formulation of a linear chance- 

constrained optimization problem and its conjugate dual prob- 

lem. They provide weak sufficient conditions which ensure strong 

duality for this primal-dual pair. Komaromi (1992) proposes two 

chance constrained linear programming problems pairs. He pro- 

vides conditions under which the dually related problems have no 

duality gap. 

In this paper, we investigate two-person zero-sum game prob- 

lem with a random payoff matrix. There are different ways to deal 

with the uncertainty. For instance, if we replace the random payoff

matrix by its expectation, stochastic variability and risk measure 

will not be considered, see Song (1992) for more details. Charnes 

et al. (1968) first introduced the chance constrained programming 

method to address random payoffs in the two-person zero-sum 

game problem. Later on, Song (1992) extended the major results 

of Charnes et al. (1968) for joint chance constraints. The main 

idea of his conservative method is to introduce the quantile of 

each element of the matrix such that the chance constraints are 

satisfied. In this paper, we study the relationship between the best 

payoff of the two players under joint chance constraints. Precisely, 

we prove that there exists a “weak duality” between the two for- 

mulations, i.e., the optimal value of player I is an upper bound of 

the one of player II. Moreover, we show that there exists a “strong 

duality” under certain assumptions. Additionally, when the payoff

matrix entries are independent and normally distributed, two 

approximation methods of the game problem are given, namely 

a conservative approximation and a relaxed approximation. We 

call an approximation hereafter conservative when its feasible set 

is a subset of the feasible set of the original problem whilst it is 

relaxed when the feasible set of the original problem is subset 

of the relaxed one. Finally, numerical tests on random generated 

instances are given to illustrate the quality of our approaches. 

3. Stochastic dual problem 

For the deterministic payoff, the two LP problems are a pair of 

primal and dual problems and their optimal values are the same. 

However, it is not the case any more for stochastic games. In this 

section, we investigate the relationship between the stochastic pri- 

mal and dual problems. 

Theorem 3.0.1. ( “Weak Duality”) Let P ∗ and D 

∗ be the optimal val- 

ues of Problems (5) and (6) respectively. If α > 0.5 and β > 0.5, then 

P ∗ ≤ D 

∗. 

Proof. We first consider the case when the payoff matrix A is 

discretely distributed. Without loss of generality, let Pr (A = A i ) = 

p i , i = 1 , . . . , N. 

Let ( d ∗, x ∗) and ( t ∗, y ∗) be the optimal solutions of the “primal”

problem and the “dual” problem respectively. Then, there exists 

two subsets J 1 , J 2 ⊂ { 1 , . . . , N} such that 
∑ 

j∈ J 1 Pr ( A = A j ) ≥ α and 

A 

T 
j 
x ∗ ≥ d ∗e m 

, f or j ∈ J 1 while 
∑ 

j∈ J 2 Pr ( A = A j ) ≥ β and A j y 
∗ ≤ t ∗e n , 

forj ∈ J 2 . 

For j ∈ J = J 1 ∪ J 2 , we define problems ( P j ) and ( D j ) as follows: 

(P j ) : P ∗j := max d 

s.t. A 

T 
j x ≥ de m 

x T e n = 1 , x ≥ 0 
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