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a b s t r a c t 

When designing an optimization model for use in mass casualty incident (MCI) response, the dynamic 

and uncertain nature of the problem environment poses a significant challenge. Many key problem pa- 

rameters, such as the number of casualties to be processed, will typically change as the response oper- 

ation progresses. Other parameters, such as the time required to complete key response tasks, must be 

estimated and are therefore prone to errors. In this work we extend a multi-objective combinatorial op- 

timization model for MCI response to improve performance in dynamic and uncertain environments. The 

model is developed to allow for use in real time, with continuous communication between the optimiza- 

tion model and problem environment. A simulation of this problem environment is described, allowing 

for a series of computational experiments evaluating how model utility is influenced by a range of key 

dynamic or uncertain problem and model characteristics. It is demonstrated that the move to an on- 

line system mitigates against poor communication speed, while errors in the estimation of task duration 

parameters are shown to significantly reduce model utility. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

1. Introduction 

In the period immediately following a mass casualty incident 

(MCI), such as the London Bombings of July 7th 2005 ( London As- 

sembly, 2006 ), many decisions need to be made in a fast and ef- 

fective manner within a high pressure environment ( Paton & Flin, 

1999 ). Within emergency response organizations such as the Am- 

bulance Service and the Fire and Rescue Service, decision makers 

must decide how best to allocate their limited resources amongst 

the various sources of demand. This problem environment exhibits 

a large amount of structure, with well defined roles and responsi- 

bilities and a clear decision making system as defined through the 

command and control system ( Wallace & de Balogh, 1985 ). In this 

respect, the problem represents a strong candidate for the appli- 

cation of mathematical modeling and optimization. However, sig- 

nificant challenges remain, particularly with respect to the volatile 

nature of the problem environment. That is, the nature of any 

decision problem is likely to change over time as the problem 

evolves, and the available information upon which a model can be 

built will typically be subject to a significant level of uncertainty 

( Galindo & Batta, 2013 ). 
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In the modeling of MCI response, as with the design of any op- 

timization model, it is necessary to make certain assumptions in 

order to ensure the implementation remains feasible. In this paper 

we seek to gain a better understanding of several characteristics of 

the response problem, their associated assumptions, and the extent 

to which they affect the utility of a scheduling-based optimization 

model. In order to proceed we first discuss a number of assump- 

tions common to optimization models for MCI response. We cover 

the modeling of casualty health, their allocation to hospitals for 

treatment, the transportation of casualties and responders around 

the response environment, and the representation of tasks which 

responders must carry out. We go on to focus on how others have 

considered the dynamic and uncertain nature of the response en- 

vironment in their models. Based on our findings, we identify gaps 

that remain uncovered in the literature and we discuss how our 

research contributes to fill such gaps. 

1.1. Common modeling assumptions 

Some common assumptions made in the design of operational 

research models for disaster operations management are identified 

in Galindo and Batta (2013) . Further common assumptions cover- 

ing the more general area of disaster planning are listed in Auf der 

Heide (2006) . 

Depending on the general form of the model, the parame- 

ters needed to specify its form can include variables such as 
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commodity supply and demand levels, resource requirements for 

specific tasks, and the number and nature of casualties. As noted 

in Galindo and Batta (2013) , it is common for models to assume 

that 

1. the information needed to deduce these parameters is available 

and accurate upon initialization of the model, and 

2. the parameters are not required to change over time. 

The extent to which these assumptions are justified depends on 

the specific problem under consideration, but will often be lim- 

ited by the intrinsic uncertainty and volatility common to all emer- 

gency response problems. Some specific examples follow. 

1.1.1. Casualty health 

Some authors assume there are no meaningful differences be- 

tween the health levels of casualties ( Barbarosoglu & Arda, 2004; 

Barbarosoglu, Ozdamar, & Cevik, 2002; Mete & Zabinsky, 2010; Rol- 

land, Patterson, Ward, & Dodin, 2010; Wex, Schryen, & Neumann, 

2011; 2012 ). Where differences are acknowledged, it is common to 

assume all casualties have been partitioned into discrete categories 

reflecting the urgency of their treatment ( Galindo & Batta, 2013 ), 

as in the work of Chiu and Zheng (2007) ; Gong and Batta (2007) ; 

Yi and Ozdamar (2007) . This is reasonable, as it is normal for an 

assessment of the health of each casualty (known as triage) to be 

completed before the remainder of the response is enacted ( Group, 

2011 ). It is often assumed that individual casualty health will not 

change over time, and that assessments of health are always accu- 

rate. The attraction of the former assumption is understandable, as 

the task of accurately forecasting the changing health of casualties 

in these environments is challenging. Some attempts are described 

in Cotta (2011) ; Fiedrich, Gehbauer, and Rickers (20 0 0) ; Tatomir 

and Rothkrantz (2006) . These models, however, do not provide 

any way to correct errors in prediction, an occurrence which we 

can assume to be likely due to the complexity of the underlying 

process. 

1.1.2. Hospitals 

Many models assume that the allocation of casualties to hospi- 

tals will be done automatically and appropriately. Limited exam- 

ples of including hospital allocation into a wider decision prob- 

lem can be found in Jotshi, Gong, and Batta (2009) ; Mysore et al. 

(2005) ; Wilson, Hawe, Coates, and Crouch (2013a) . In Wilson et al. 

(2013a) an often ignored aspect of casualty management, self pre- 

sentation , is discussed. It is often assumed that all casualties are 

transported to hospital by the Ambulance Service only ( Auf der 

Heide, 2006 ), with the casualty undergoing triage and treatment 

operations prior to this. In reality, it is common for some casu- 

alties to remove themselves from the incident site and transport 

themselves to a hospital of their choosing. In Wilson et al. (2013a) 

it is assumed that this process could be predicted accurately. In 

scenarios where this is not possible, a dynamic approach, updat- 

ing the model regarding the number of casualties who have left 

the incident scene and who have arrived at each hospital, may be 

effective. 

1.1.3. Transportation 

The transport network within the problem environment is of- 

ten assumed to be known, both in terms of topology and the travel 

times between locations ( Yi & Kumar, 2007; Zhang, Li, & Liu, 2012 ). 

As noted in Galindo and Batta (2013) , the former assumption is 

more justified than the latter. Examples of removing the latter as- 

sumption include ( Wilson, Hawe, Coates, & Crouch, 2013b ). In this 

work it is demonstrated that disruption to the network resulting 

in uncertainty in travel times can have a significant effect on the 

performance of an optimization model. As such, this problem char- 

acteristic should not be ignored. 

Uncertainty in the disruption of the transport network has been 

incorporated to a limited extent using stochastic programming for- 

mulations. Examples include ( Barbarosoglu & Arda, 2004; Mete & 

Zabinsky, 2010; Rawls & Turnquist, 2010 ), which consider a finite 

number of scenarios, each with assigned probability and associ- 

ated network parametrization. Uncertainty is also acknowledged 

in the work of Jotshi et al. (2009) , which extends the ambu- 

lance allocation model presented in Gong and Batta (2007) by in- 

cluding a data fusion step to estimate the level of damage and 

disruption on each road link. A solution methodology for find- 

ing optimal paths in a disrupted network following a disaster 

is presented in ( Zhang, Zhang, Zhang, Wei, & Deng, 2013 ). The 

authors employ the network representation described by Yuan 

and Wang (2009) , where the travel time associated with each 

edge of the transport network is assumed to increase over time 

in a manner which reflects its proximity to the disaster. A dy- 

namic transport network structure is also modeled in the work of 

Fiedrich et al. (20 0 0) , with nodes and edges being added or re- 

moved to reflect the impact of both the disaster and the response 

operation. 

1.1.4. Task durations 

Where the modeling methodology involves the allocation of 

discrete tasks to available responder units, the times needed to 

complete these tasks are necessary problem parameters. Exam- 

ples include the scheduling models presented in Rolland et al. 

(2010) and Wex et al. (2011) . In the former, the authors pro- 

pose a specific solution algorithm which, through its fast execu- 

tion, is designed to facilitate the solving of their proposed model 

in near-real time. The authors argue this will allow decision mak- 

ers to re-solve any particular response problem when conditions 

change, although this capability is not explicitly tested and evalu- 

ated. In Wex et al. (2011) a similar modeling methodology is pro- 

posed, where all necessary parameters are assumed to be fixed 

and known upon model initialization. This model is extended 

in Wex, Schryen, and Neumann (2012) , allowing for task dura- 

tions to be represented by fuzzy values in an effort to acknowl- 

edge the uncertainty inherent in available information. The au- 

thors suggest the model should be regularly rebuilt and solved 

when the problem environment has evolved by some significant 

degree. 

1.2. Modeling uncertainty and dynamicity 

All the assumptions mentioned relate to model parameters 

which change over time, either because they are estimates of un- 

known real values and can therefore be revised as new informa- 

tion comes to light, or because the real values themselves are of 

a dynamic nature, or both. In the worst cases these assumptions 

will render a model unusable in many realistic scenarios. General 

strategies to their removal tend to take either a stochastic yet static 

approach, applying stochastic ( Barbarosoglu & Arda, 2004; Chang, 

Tseng, & Chen, 2007; Mete & Zabinsky, 2010 ) or robust ( Bozorgi- 

Amiri, Jabalameli, Alinaghian, & Heydari, 2012 ) programming to 

find solutions which will remain valid as the problem evolves over 

time, or a dynamic approach, allowing for the model to be updated 

at a number of set length intervals to help ensure it remains appli- 

cable (see, for example, Lee, Ghosh, & Ettl, 2009; Ozdamar, Ekinci, 

& Kucukyazici, 2004; Yi & Kumar, 2007 ). Only limited steps have 

been taken with the latter approach. In the context of manufac- 

turer or retailer response to hurricanes, the supply chain models 

proposed in Lodree and Taskin (2009) ; Taskin and Lodree (2011) 

employ a Bayesian approach to allow for dynamic information to 

be incorporated into future decisions. In Gong and Batta (2007) the 

authors note that determining the appropriate length of update in- 

terval is crucial to performance, proposing that future work should 



Download English Version:

https://daneshyari.com/en/article/6895821

Download Persian Version:

https://daneshyari.com/article/6895821

Daneshyari.com

https://daneshyari.com/en/article/6895821
https://daneshyari.com/article/6895821
https://daneshyari.com

