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a b s t r a c t

We present two new mixed integer programming formulations for the order acceptance and scheduling

problem in two machine flow shops. Solving this optimization problem is challenging because two types

of decisions must be made simultaneously: which orders to be accepted for processing and how to schedule

them. To speed up the solution procedure, we present several techniques such as preprocessing and valid in-

equalities. An extensive computational study, using different instances, demonstrates the efficacy of the new

formulations in comparison to some previous ones found in the relevant literature.
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1. Introduction

Many manufacturing companies use Make-To-Order (MTO) pro-

duction systems. In MTO systems, planning for the manufacture of a

product will begin only when a customer order is received. The main

advantage of these systems is that they give rise to low finished goods

inventories. However, these systems have a significant disadvantage

in that the lead time for the fulfillment of orders may result in sig-

nificant financial loss for companies because of the loss of business

due to production limitations. As a consequence, to remain compet-

itive, companies employing these systems must decrease their order

delivery times. This can be achieved by employing an accurate pro-

duction plan that determines which orders should be accepted and

how they should be scheduled. The solution to the Order Acceptance

and Scheduling Problem (OASP) is an important step in the develop-

ment of such a plan.

OASPs have been studied extensively over the past 20 years and

a number of different versions of these problems exist. We refer in-

terested readers to the literature survey by Slotnick (2011) for details.

Versions of OASPs in which the objective functions maximize the to-

tal net revenue, i.e. the difference between sum of revenues and total

weighted tardiness or lateness, have been studied by many authors

in a single-machine environment. Slotnick and Morton (1996) are be-

lieved to be the first researchers who addressed this problem under

the assumption of static arrivals, meaning that all jobs are assumed

to be available at time zero. They proposed two heuristic algorithms
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and a Branch and Bound (B&B) technique to solve the problem in this

case.

Later, Ghosh (1997) proved that an OASP with lateness penal-

ties is NP-hard. He also presented two pseudo-polynomial time

dynamic programming algorithms, and a polynomial-time approx-

imation scheme in order to solve the problem. Slotnick and Mor-

ton (2007) considered tardiness related penalties instead of lateness

penalties. They developed a B&B algorithm and a number of heuris-

tics to solve this problem exactly with at most 10 jobs in about 6000

seconds on average. As far as we know, the largest instances of OASP

with tardiness related penalties in a single-machine environment

were solved by Nobibon and Leus (2011). They proposed two Mixed

Integer Linear Programming (MILP) formulations and could solve in-

stances of the problem with at most 50 jobs to optimality within two

hours using the IBM ILOG CPLEX Optimizer (see http://www-01.ibm.

com/software/info/ilog). In order to compute high quality solutions

for large size instances of the problem, Rom and Slotnick (2009) de-

veloped a genetic algorithm. They showed that while their proposed

approach is slower than the available heuristics appearing in the rel-

evant literature, it generates solutions of higher quality.

Oğuz, Salman, and Yalçın (2010) added more assumptions to the

OASP with tardiness related penalties in a single machine environ-

ment. They considered release dates for each job and sequence de-

pendent setup times. They gave a MILP formulation of the problem

and could solve instances of the problem with at most 15 jobs to op-

timality. To compute high quality solutions for larger size instances

of the problem, they also developed three heuristics. Later, Cesaret,

Oğuz, and Salman (2012) developed a tabu search algorithm for this

problem. They showed that their proposed algorithm is faster and can

provide solutions with higher quality when compared with previous
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heuristics. Lin and Ying (2013) introduced a new artificial bee colony

based algorithm to solve this problem. Their experimental results in-

dicated that their proposed heuristic is competitive with the algo-

rithm by Cesaret et al. (2012).

There are also a few studies about the OASP with tardiness related

penalties in an m-machine permutation flow shop environment. For

example, Xiao, Zhang, Zhao, and Kaku (2012) developed a partial op-

timization based simulated annealing algorithm to solve instances of

the problem. Later, Lin and Ying (2015) presented a multi-initiator

simulated annealing algorithm, and showed that the new heuristic

outperforms the algorithm by Xiao et al. (2012). Recently, Lei and Guo

(2015) addressed the biobjective version of the problem where the

objectives are minimization of the makespan and maximization of

the total net revenue. To solve instances of the problem, they em-

ployed a parallel neighborhood search algorithm and compared it

with a tabu search and a variable neighborhood search algorithm.

In this paper, we consider the OASP in a 2-Machine Flow shop

environment (OASP-2MF) which is recently addressed by Wang, Xie,

and Cheng (2013a) and Wang, Xie, and Cheng (2013b). In Wang et al.

(2013b), the authors tried to generalize the work of Slotnick and

Morton (2007). They introduced two MILP formulations which could

solve instances of the problem with up to 13 jobs within a one hour

time limit using CPLEX. In addition, they proposed a B&B algorithm

which simultaneously took into account job selection and scheduling

and benefited from the use of some dominance rules in the prun-

ing procedure. They showed that their purpose-built solver can solve

larger sized instances of the problem with up to 20 jobs within an

hour. In Wang et al. (2013a), the authors developed a modified artifi-

cial bee colony algorithm to compute good solutions for even larger

instances of the problem.

The main contribution of our research is the development of two

new MILP formulations for the OASP-2MF. In addition, to speed up

the solution procedure, we present several enhancements (cuts and

preprocessing techniques) which can reduce the size of the problem

significantly and make the formulations stronger. Our new formula-

tions have the following three desirable characteristics:

• The number of variables and constraints in these formulations is

quadratically bounded by the number of jobs. Some previous re-

searchers have developed time-indexed formulations for single-

machine or 2-machine flow shop versions of the OASP, but the

size of these formulations can increase dramatically if processing

times are large.
• They outperform previous formulations even before applying the

enhancements.
• CPLEX can solve instances of the problem that are 5 times larger

than those solved by the purpose-built solver which is developed

in Wang et al. (2013b).

We compare our new formulations after applying the enhance-

ments and show that one of them performs far better than the other.

Using our best formulation, CPLEX can achieve an optimality gap of

less than 2 percent, on average, within 1800 seconds, even for in-

stances of OASP-2MF with as many as 100 jobs.

The rest of the paper is organized as follows. In Section 2, we re-

view some preliminary notation and results. In Section 3, we intro-

duce two new MILP formulations for OASP-2MF. In Section 4, we dis-

cuss enhancements to make the formulations stronger. In Section 5,

we report the results of a comprehensive computational study. Fi-

nally, in Section 6, we give some concluding remarks.

2. Preliminaries

In an OASP-2MF two decisions must be made at the same time:

which orders to be accepted for processing and how to schedule

them. We assume that the set of orders (jobs) is known in advance.

Due to the flow shop structure of the problem, each job can be pro-

cessed on machine 2 at some time after its processing on machine 1

has been completed.

We denote the set of jobs by N = {1, 2, . . . , n}. The revenue and

processing times of each job i ∈ N on machines 1 and 2 are denoted

by ui ∈ Z
+, p1

i
∈ Z

+ and p2
i

∈ Z
+ (where we use Z

+ to denote the set

of positive integers), respectively. We sometimes sort the processing

times on each machine from small to large. We use p1
[i]

and p2
[i]

to

denote the processing times in the ith position of the sorted lists, for

machines 1 and 2, respectively. We denote the completion time of job

i ∈ N by Ci. We assume that each job i ∈ N has a due date, denoted

by di ∈ Z
+, and that there is a delay penalty, denoted by wi ∈ Z

+,

for each unit of the completion time which exceeds di, i.e., Ci − di

(note that due dates are positive integers). Also, there is no reward or

penalty for early delivery. We sometimes refer to the delay time of the

job i ∈ N as its tardiness, and denote it by Ti, i.e., Ti = max{0,Ci − di}.

The net revenue, i.e., the difference between the revenue and the de-

lay cost, of each job i ∈ N is defined by πi := ui − wi · Ti. Furthermore,

we assume that the goal is to maximize the total net revenue in the

OASP-2MF.

Observe that, in an optimal solution, if job i ∈ N is accepted, then

π i ≥ 0. Moreover, πi = ui if job i ∈ N is accepted and fulfilled before

its due date, and π i < ui if job i ∈ N is accepted and fulfilled after its

due date. We sometimes refer to ui − πi (or equivalently wi · Ti) as the

tardiness penalty for job i ∈ N, if it is accepted. The following proposi-

tions provide the basis for the development of the different MILP for-

mulations and enhancements in this paper. Note that Propositions 1

and 3 are straight forward to prove, and they are known results in

the literature of the classical 2-machine flow shop problem (see for

instance Baker, 1974; Kim, 1993). Therefore, we have omitted their

proofs. Moreover, it should be mentioned that Wang et al. (2013b)

used Proposition 1 to validate their MILP formulations.

Proposition 1. For accepted jobs, there is an optimal schedule in which

each job is processed on both machines in the same sequence.

Proposition 2. In an optimal schedule, CU
i

:= ui
wi

+ di is an upper bound

for the completion time of an accepted job i ∈ N.

Proof. Suppose that the assertion is not true. Therefore, there must

exist a job i ∈ N in an optimal schedule whose completion time Ci is

strictly larger than CU
i

. The net revenue of job i is

πi = ui − wi · max{0, (Ci − di)}.
Because CU

i
< Ci,

πi < ui − wi · max{0, (CU
i − di)}

= ui − wi · max

{
0, (

ui

wi

+ di − di)
}

= 0.

This contradicts our assumption that the schedule is optimal since we

can improve the total net revenue by simply rejecting job i. �

Note that Proposition 2 is independent of machine environment

and processing restrictions.

Proposition 3. Let S be the list of accepted jobs for a schedule and sup-

pose that the jobs will be processed in the same order as they appear in

the list. Let Jk ∈ S be the job which is allocated to position k in the list S

where 1 ≤ k ≤ |S| and |S| is the number of elements of S. Then

CL
Jk

:= max

{ ∑
1≤q≤k

p1
Jq

+ p2
Jk
,

∑
1≤q≤k

p2
Jq

+ p1
J1

}

is a lower bound for the completion time of job Jk.

3. New formulations

In this section, we describe two new MILP formulations for the

OASP-2MF. We then compare them with two Previous Formulations
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