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a b s t r a c t

In the mixed capacitated general routing problem, one seeks to determine a minimum cost set of vehicle

routes serving segments of a mixed network consisting of nodes, edges, and arcs. We study a bi-objective

variant of the problem, in which, in addition to seeking a set of routes of low cost, one simultaneously seeks a

set of routes in which the work load is balanced. Due to the conflict between the objectives, finding a solution

that simultaneously optimizes both objectives is usually impossible. Thus, we seek to generate many or all

efficient, or Pareto-optimal, solutions, i.e., solutions in which it is impossible to improve the value of one

objective without deterioration in the value of the other objective. Route balance can be modeled in different

ways, and a computational study using small benchmark instances of the mixed capacitated general routing

problem demonstrates that the choice of route balance modeling has a significant impact on the number and

diversity of Pareto-optimal solutions. The results of the computational study suggest that modeling route

balance in terms of the difference between the longest and shortest route in a solution is a robust choice that

performs well across a variety of instances.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

Routing problems arise in many practical applications and have

been widely studied. Given a network, one or several routes need to

be created visiting all, or a subset of, the network’s nodes, arcs, and/or

edges. An overview and early references can be found in Laporte and

Osman (1995) and a history can be found in Laporte (2009). Two pop-

ular variants are the capacitated vehicle routing problem (CVRP) and

the capacitated arc routing problem (CARP). In the CVRP, the nodes

in the network need to be served, while in the CARP the arcs/edges

need to be served.

We consider the mixed capacitated general routing problem (MC-

GRP), a generalization of both the CVRP and the CARP. It is de-

fined on a mixed network N = (V, E, A), where V is a set of nodes,

E a set of undirected edges, and A a set of directed arcs. Some

of the nodes, edges, and arcs are required, i.e., they have a non-

negative demand that needs to be served. Each edge and each arc
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have a non-negative traversal cost, and required nodes, edges, and

arcs may have a non-negative service cost. A fixed homogeneous

fleet of vehicles with a given service capacity is available for serv-

ing the demand. Typical applications are waste collection and news-

paper distribution where arcs/edges represent streets and nodes

represent facilities, e.g., schools, and residential and commercial

buildings.

The MCGRP was introduced by Pandi and Muralidharan (1995),

who propose a heuristic solution procedure based on creating one gi-

ant route which is subsequently split into individual vehicle routes.

The literature on MCGRP is scarce, but includes both heuristic

procedures and exact solution approaches: Gutiérrez, Soler, and

Hervás (2002) propose a heuristic based on the cluster-first route-

second principle. Their heuristic is compared with the one by Pandi

and Muralidharan (1995) and shows promising results. Prins and

Bouchenoua (2005) develop a memetic algorithm and introduce a set

of benchmark instances. Other methods explored are simulated an-

nealing (Kokubugata, Moriyama, & Kawashima, 2007) and adaptive

iterated local search (Dell’Amico, Díaz, Hasle, & Iori, 2015). The first

integer programming formulation is given by Bosco, Laganà, Mus-

manno, and Vocaturo (2013) who use a branch-and-cut algorithm

to find optimal solutions to small instances. Combinatorial bounds

were studied by Bach, Hasle, and Wøhlk (2013). The MCGRP with
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stochastic demands is introduced by Beraldi, Bruni, Laganà, and Mus-

manno (2015). A chance-constrained integer programming formula-

tion is proposed, and solved exactly by a branch-and-cut algorithm

and heuristically by a neighborhood search algorithm.

Most previous studies of the MCGRP consider a single objective:

minimize total route cost. We study a bi-objective version of the

problem where, in addition to seeking to minimize total travel cost,

we simultaneously seek to balance the route lengths. In this paper,

we assume that cost is a linear function of the travel distance and

that a set of routes is balanced if the travel distances of the routes

are similar. This extension of the MCGRP is motivated by its practical

relevance, because in many real-life applications, it is desirable for

drivers to have comparable workloads. To the best of our knowledge,

there is only one publication on the bi-objective MCGRP with route

balance: Mandal, Pacciarelli, Løkketangen, and Hasle (2015) consider

the bi-objective MCGRP where route balance is defined as the dif-

ference between the longest and the shortest route. A memetic algo-

rithm is proposed as solution method. We note that route balance can

be defined in various ways, and one of our goals is to investigate the

impact of this modeling choice.

The main contributions of this paper are that we (1) provide new

insights in the simultaneous minimization of route cost and route

balance for vehicle routing problems, and (2) provide new insights

in the effect of the choice of route balance modeling on the Pareto

front. Our computational study, using small benchmark instances of

the mixed capacitated general routing problem, demonstrates that

the choice of route balance modeling has a significant impact on the

Pareto front in terms of the number of Pareto-optimal solution and di-

versity of Pareto-optimal solutions. These insights may allow practi-

tioners and academics to make more informed choices when includ-

ing route balance as an objective in vehicle routing problems.

The remainder of this paper is organized as follows. Section 2

presents insights on the effects of considering both route cost and

route balance in routing problems. Section 3 discusses related and

relevant literature. Section 4 introduces a method for solving the bi-

objective MCGRP. Section 5 presents the numerical results of a com-

putational study. Finally, Section 6, contains concluding remarks and

suggestions for future research.

2. Bi-objective vehicle routing problems—some insights

Bi-objective routing problems belong to the class of multi-

objective optimization problems, see e.g., Ehrgott (2005). These prob-

lems can be described as follows:

min
x∈X

z(x) := {z1(x), z2(x), . . . , zp(x)},
where X ∈ R

n represents the feasible set in the decision space, and

the image Y of X under vector-valued function z = {z1, . . . , zp} rep-

resents the feasible set in the criterion space, i.e., Y := z(X ) := {y ∈
R

p : y = z(x) for some x ∈ X }. Because there are multiple objectives,

there will be, in most cases, multiple solutions that can be consid-

ered optimal, or non-dominated. Such solutions are often referred to

as Pareto optimal. More specifically, we have:

Definition. A solution x∗ ∈ X is a weak Pareto optimum if and only if

there is no x ∈ X such that zi(x) < zi(x
∗) for i = 1, . . . , p.

Definition. A solution x∗ ∈ X is a strict Pareto optimum if and only

if there is no x ∈ X such that zi(x) ≤ zi(x
∗) for i = 1, . . . , p and z(x) �=

z(x∗).

The image of all strict Pareto optimal solutions is called the Pareto

front, alternatively the efficient frontier or the nondominated fron-

tier. In the bi-objective case, there are exactly two objectives z1(x)

and z2(x), i.e., p = 2.

We will study the Pareto front of routing problems with two ob-

jectives: minimize the route cost and maximize the route balance.

In this section, we use the CVRP to illustrate features of bi-objective

routing problems. The insights are, however, general and also hold for

the CARP and the MCGRP. We make the following assumptions:

1. There is a fleet of m homogeneous vehicles with capacity Q that

has to serve n customers, each with a demand that is less than or

equal to the vehicle capacity.

2. A solution consists of a single route for each vehicle, starting and

ending at the depot and serving at least one customer. Further-

more, each customer is served by exactly one vehicle.

The first objective, which is also the typical objective in routing

problems, is to minimize the total cost of the solution, i.e.,

min
∑
r∈�

tr,

where � is the set of all possible routes and tr is the cost of route r. For

ease of presentation, we assume that the cost of a route is the travel

distance of the route. The second objective is to maximize the route

balance, or minimize the route imbalance, where we define route bal-

ance with respect to the travel distance of the routes in the solution.

The first challenge encountered when solving bi-objective routing

problems with route balance as one of the objectives is choosing how

to model route balance. Two natural choices are:

min
∑
r∈�

(tr − μ)
2
,

and

min tL − tS,

where μ is the average travel distance of the routes in the solution,

and tL and tS are the travel distance of the longest and shortest route

in the solution, respectively. The first choice is equivalent to minimiz-

ing the variance of the travel distance of the routes in the solution.

Only for a perfectly route balanced solution will these two route

balance objectives have the same optimal value: 0. Given that a per-

fectly route balanced solution rarely has minimum total travel dis-

tance, these two route balance objective will likely result in substan-

tially different Pareto fronts. An important difference between the

two route balance objectives is that the first explicitly takes the travel

distance of all routes in the solution into account, whereas the sec-

ond only implicitly takes the travel distance of all routes in the so-

lution into account by ensuring that all travel distances are between

the longest and shortest travel distance. If a decision maker seeks to

create routes that result in an equitable workload for the drivers, i.e.,

a fair distribution for the travel distances of the routes, a variance

objective may be more suitable. However, a variance objective may

also result in solutions with extremes, i.e., one substantially longer

or shorter route, which may be undesirable. Such extremes may be

avoided by imposing lower and upper bounds on the individual route

length.

Using a variance objective may also be more computationally de-

manding, because the mean length of routes in a solution is not

known in advance and because variance is a quadratic function. Two

alternative formulations where travel distances of all routes are con-

sidered are as follows:

min
∑
r∈�

(
tr − tS

)
,

and

min
∑
r∈�

|tr − T G|,

where tS, as before, is the travel distance of the shortest route in the

solution, and where tG is a prespecified target route travel distance.

For some real-life routing problems a natural target travel distance
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