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a b s t r a c t

In this paper we propose a quantile-based risk measure which is defined using the modified loss distribu-

tion according to the decision maker’s risk and loss aversion. The properties related to different classes of

disutility functions are established. A portfolio selection model in the Mean-Risk framework is proposed and

equivalent formulations of the model generating the same efficient frontier are given. The advantages of this

approach are investigated using real world data from NYSE. The differences between the efficient frontier of

the proposed model and the classical Mean-Variance and Mean-CVaR are quantified and interpreted. Exten-

sive experiments show that the efficient portfolios obtained by using the proposed model exhibit lower risk

levels and an increased satisfaction compared to the other two Mean-Risk models.
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1. Introduction

Solving the portfolio selection problem relies on models for pref-

erence between random variables representing portfolio returns.

Choosing a specific model is itself a problem because each type

of models assumes a different vision on choice under risk, differ-

ent theoretical basis with strengths and weaknesses, and differ-

ent degrees of computational tractability. In this paper, we present

a new Mean-Risk model of portfolio selection. Its novelty consists

in using of a new risk measure based on the modified loss dis-

tribution function according to the decision maker’s risk and loss

aversion preferences. These preferences are usually described by in-

creasing, smooth and concave utility functions, but studies in be-

havioral finance showed that people systematically violate expected

utility theory, see for example Camerer, Kagel, and Roth (1995).

Kahneman and Tversky (1979) and Tversky and Kahneman (1992)

have found that decisions are driven especially by loss aversion and

the prospect of ending up with less than the initial wealth. There

is also the power utility function with loss aversion implemented

by Maringer, Kontoghiorghes, Rustem, and Winker (2008) where the

returns are adjusted before they are evaluated in the utility func-

tion: returns lower than a prescribed threshold are given dispropor-

tionate weight. Therefore, the utility changes abruptly resulting in

a kinked utility function, see Cremers, Kritzman, and Page (2005);

Hagstromer and Binner (2009); Maringer et al. (2008); Sharpe (2007).

There is a variety of reasons why decision makers have critical
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thresholds: some investors might violate loan covenants if their as-

sets fall below a specified value, others face regulatory mandates

which require a minimum level of reserves, also in the practice of

risk when asset levels fall under the loss threshold fund managers are

penalized.

Apart these approaches relying on utility functions, there are the

Mean-Risk models. Variance was the first risk measure used in port-

folio optimization. The Mean-Variance (MV) methodology proposed

by Markowitz (1952) has played a crucial role in portfolio theory and

provided the fundamental basis for the development of a large part

of the modern financial theory applied to the portfolio optimization

problem; moreover, in his recent paper (Markowitz, 2012), a thor-

oughly research on mean–variance approximations to expected util-

ity can be found. But regulations for finance businesses formulate

some of the risk management requirements in terms of quantiles

of loss distributions. The most commonly used is the Value at Risk

(VaR). VaR can be efficiently estimated and managed when underly-

ing risk factors are normally distributed. However, for non-normal

distributions, VaR may have undesirable properties (see Artzner, Del-

baen, Eber, & Heath, 1999) such as the lack of sub-additivity. Also,

VaR is difficult to control/optimize for discrete distributions, when

it is calculated using scenarios. In this case, VaR is non-convex and

non-smooth as a function of positions, and has multiple local ex-

trema. To alleviate these problems, (Artzner et al., 1999) proposed

the Conditional VaR (CVaR) which is sub-additive and, consequently,

coherent. CVaR continues to be intensively studied and applied in

different contexts. For example, in the context of enhanced indexa-

tion, the paper of Roman, Mitra, and Zviarovich (2013) provides a uni-

fied framework incorporating CVaR and second order stochastic dom-

inance. More detailed discussions on CVaR and new advances on its
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estimation and asymptotics can be found in Rockafellar and Uryasev

(2002) and Chun, Shapiro, and Uryasev (2012), just to name a few.

The contribution of this paper is threefold. Firstly, we propose a

risk measure defined using the modified loss distribution accord-

ing to the decision maker’s risk and loss aversion preferences and

establish its properties (Section 2). Our motivation is based on the

well known fact well acknowledged in the literature that different

categories of investors have different modeling needs which are not

well met by standard approaches, see (Spronk & Hallerbach, 1997;

Cillo & Delquié, 2014; Wächter & Mazzoni, 2013). Investors prefer-

ences are often, but not exclusively related to utility functions. Many

other different ideas of modeling them were proposed in the liter-

ature. For example, investor’s preferences can be captured through

various types of constraints such as cardinality constraints in port-

folio optimization as in Chang, Meade, Beasley, and Sharaiha (2000)

and Woodside-Oriakhi, Lucas, and Beasley (2011), or in energy plan-

ning as in Chang (2014), crop planning as in Rădulescu and Rădulescu

(2012) and Rădulescu and Rădulescu (2014), socially responsible in-

vestments as in Hallerbach, Ning, Soppe, and Spronk (2004), just to

name a few. Also, to accommodate the preferences of non-standard

investors (expressed as additional stochastic and deterministic ob-

jectives such as liquidity, dividends, number of securities in a port-

folio, social responsibility,...), portfolio selection models with multi-

ple criteria that ensures portfolio suitability are developed in Steuer,

Qi, and Hirschberger (2007). Moreover, the very choice of the risk

measure used in the portfolio model is a manifestation of prefer-

ences. Apart the classical risk measures, new ones were designed

to cover various risk profiles, see for example the Conditional Aver-

age (inspired by CVaR but using two confidence levels) introduced by

Krzemienowski (2009). The idea of using more than one confidence

level is also present in Kalinchenko, Uryasev, and Rockafellar (2012)

where risk preferences are calibrated by the coefficients in the mixed

CVaR deviation. But usually investors preferences are related to utility

functions. Up to now, in conjunction with a Mean-Risk model (most

frequently with Mean-Variance), investor’s utility function was used

to determine the preferred portfolio out of the investment set rep-

resented by the Mean-Risk efficient frontier, see (De Giorgi & Hens,

2009; Hens & Mayer, 2014; Kroll, Levy, & Markowitz, 1984; Levy &

Levy, 2004; Pirvu & Schulze, 2012). In this paper, instead of taking

into account investor’s preferences only in this second phase, we

bring them into the risk measure by using her/his utility function

that captures the investor’s risk and loss aversion; consequently, pref-

erences are fully taken into consideration right from the first phase

in which the efficient frontier is determined. Thus, this paper ad-

dresses one of the main universally acknowledged streams of con-

cerns: the challenge to balance the properties of the risk measure

with behavioral and practical considerations. Secondly, we consider

a bi-objective portfolio selection model in the Mean-Risk framework

using the risk measure previously defined. and give different equiva-

lent representation of the efficient frontier (Section 3). We give three

equivalent formulations of the model. They are equivalent in the

sense that they produce the same efficient frontier. The equivalence

between the three models is proven for the Mean-Variance efficient

frontier in Steinbach (2001), for the Mean-Regret efficient frontier in

Dembo and Rosen (1999) and for the Reward-CVaR efficient frontier

in Krokhmal, Palmquist, and Uryasev (2002). Thirdly, we investigate

the practical performances of the model using real data from New

York Stock Exchange (Section 4). We present the forecast procedure

used and the out-of-sample analysis assessing the reliability of the

forecast (Section 4.1). We compare the efficient frontier of the pro-

posed model with the Mean-CVaRand Mean-Variance frontiers quan-

tifying the differences and similarities between them (Section 4.2).

Moreover, we assess the investor’s benefits of using the proposed

model: out-of-sample experiments show that the efficient portfo-

lios obtained by using it exhibit lower risk levels (at the same return

levels).

2. Disutility-based risk measures

Let n be the number of securities available for the portfolio.

The key random inputs in the portfolio management problem are

the asset prices at the end of the planning horizon denoted by

p(ω) = (p1(ω), . . . , pn(ω)), ω ∈ � or simply by p (we use bold

symbols for vectors). The set � represents the set of future states

of knowledge and has the mathematical structure of a probability

space with a probability measure P for comparing the likelihood of

future states ω. Let l(x, p) be the loss associated with the decision

vector x ∈ X ⊂ R
n and the random vector p, where x is interpreted as

a portfolio and X is the set of available portfolios subject to various

constraints. The loss equals to the difference between the initial

wealth W0 and the final random wealth, l(x, p) = W0 − W, where

W = xT p. Positive outcomes of loss function are disliked, while neg-

ative outcomes are welcome because they represent gains. For each x

∈ X, the loss l(x, p) is a random variable having a distribution in R in-

duced by that of p. Throughout this paper, the loss function can have

a more general form if it is continuous in x, measurable in p and E(|l(x,

p)|) < ∞ ∀x ∈ X. The underlying probability distribution of p in R
n is

assumed to have the probability density function (pdf) g(p), p ∈ R
n.

Given z a level of losses, the cumulative distribution func-

tion (cdf) of l(x, p) is defined by Gl(x,p)(z) = P({p |l(x, p) ≤ z}) =∫
l(x,p)≤z g(p)dp and is assumed continuous with respect to z. Let

G←
l(x,p)

: (0, 1) → R be the α−quantile function, given by G←
l(x,p)

(α) =
min

Gl(x,p)(z)≥α
z. Within risk management, it is called the Value at Risk of

the loss l(x, p) at a probability level of α ∈ (0, 1), denoted by VaRα

(l(x, p)) or zα(x). Artzner et al. (1999) introduced the concept of co-

herent risk measure. The Conditional Value at Risk (CVaRα)of the loss

l(x, p) at probability level α ∈ (0, 1) proved to be coherent, see for

example Pflug and Uryasev (2000). The dedicated notation which as-

sociates any portfolio x ∈ X to its corresponding CVaRα is φα: X → R

given by

φα(x) = 1

1 − α

∫
l(x,p)≥zα (x)

l(x, p)g(p)dp. (1)

Generally, in the literature, l(x, p) = W0 − W and consequently,

for a given probability distribution of p, CVaRα will be the same for

all investors whatever their particular profiles of loss aversion. But in

real life, an investor has a certain risk profile and also a critical loss

level; it is the case of an investor whose lifestyle might change dras-

tically if a certain critical loss level is reached. Therefore, a more real-

istic approach is to consider that the decision maker is characterized

by an increasing convex disutility function D with loss aversion which

exhibits a kink at this critical loss level θ . When θ is reached, the per-

ception of losses changes abruptly: the losses higher than this criti-

cal threshold are given disproportionate weight in accordance with a

loss aversion parameter λ which yields a kink on the disutility func-

tion located at the critical loss value. An example of such a disutility

function D that captures the investor’s risk and loss aversion can be

written based on the utility function U defined in Adler and Kritzman

(2007); Cremers et al. (2005):

U(z) =
{

ln (1 + z), for z ≥ θ

λ(z − θ ) + ln (1 + θ ), for z < θ,
(2)

where D(z) = −U(−z), ∀z ∈ R. This function is also similar to the

piecewise linear loss-averse utility used in Fortin and Hlouskova

(2011). More examples of disutility functions with loss aversion, can

be found in Maringer et al. (2008) and for the effect of utility func-

tions on the optimal portfolio see also Yu, Pang, Troutt, and Hou

(2009) and Çanakoğlu and Özekici (2010).

When making decisions by considering the disutility of the loss

as previously described, we define the Conditional Value at Risk of the
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