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a b s t r a c t

In this paper, we consider the online strip packing problem, in which a list of online rectangles has to be

packed without overlap or rotation into a strip of width 1 and infinite length so as to minimize the required

height of the packing. We derive a new improved lower bound of (3 + √
5)/2 ≈ 2.618 for the competitive

ratio for this problem. This result improves the best known lower bound of 2.589.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

In this paper, we consider online strip packing of rectangles. Rect-

angles arrive one by one in an online fashion and have to be packed

into a strip of width 1 and infinite length without known any in-

formation about future rectangles. The rectangles must be packed

without overlap and rotation and couldn’t be moved when they

are already packed. The objective is to minimize the total height

of the packing. The strip packing problem was first considered by

Baker, Coffman, and Rivest (1980). They showed that this problem

is NP−Hard. Strip packing has many real-world applications in man-

ufacturing, logistics, and computer science, e.g., VLSI layout design,

stock cutting problem.

To evaluate the performance of an online algorithm we adopt

competitive analysis. For any list of rectangles L, the height of a strip

used by algorithm A and by the optimal solution is denoted by A(L)

and OPT(L), respectively. The (absolute) competitive ratio of A, de-

noted by RA, is given by

RA = sup
L

{
A(L)

OPT(L)

}
.

The asymptotic competitive ratio R∞
A

of A is defined by

R∞
A = lim sup

n→∞
sup

L

{
A(L)

OPT(L)

∣∣∣∣OPT(L) = n

}
.
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For the offline strip packing problem, Coffman, Garey, Johnson,

and Tarjan (1980) presented the algorithms NFDH and FFDH with

asymptotic competitive ratios of 2 and 1.7, respectively. An AFPTAS

was given by Kenyon and Rémila (2000). Sleator (1980) presented

an approximation algorithm with an absolute competitive ratio of

2.5. This was independently improved by Schiermeyer (1994) and

Steinberg (1997) with algorithms of absolute competitive ratio 2.

Harren and van Stee (2009) first broke the barrier of 2 and presented

an algorithm with a absolute competitive ratio of 1.936. Then this

bound was improved to 5/3 + ε for any ε > 0 by Harren, Jansen,

Prädel, and van Stee (2014).

For the online strip packing problem, Baker and Schwarz (1983)

showed the first fit shelf algorithm has absolute competitive ratio

of 6.99. The upper bound was improved to 7/2 + √
10 ≈ 6.6623 by

Ye, Han, and Zhang (2009) and Hurink and Paulus (2007) indepen-

dently. Regarding the lower bound on the competitive ratio for online

strip packing, Brown, Baker, and Katseff (1982) derived a lower bound

ρ ≥ 2 on the competitive ratio of any online algorithm by construct-

ing adversary sequences (BBK sequences). Then Johannes (2006) and

Hurink and Paulus (2008) improved the bound to 2.25 and 2.43 by

studying BBK sequences. Kern and Paulus (2013) finally showed that

the BBK sequences can be packed by providing matching upper and

lower bounds of 3/2 + √
33/6 ≈ 2.457. The current best known result

ρ ≥ 2.589 was presented by Harren and Kern (2015) by constructing

modified BBK sequences.

A related problem is the multiple-strip packing problem. Zhuk

(2006) first considered this problem and showed that there is

no approximation algorithm with absolute competitive ratio bet-

ter than 2 unless P = NP even if there are only two strips. Latter

Ye, Han, and Zhang (2011) presented a nearly optimal algorithm

with an absolute competitive ratio of 2 + ε for any ε > 0. Then
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Fig. 1. The list of Ln .

Bougeret, Dutot, Jansen, Otte, and Trystram (2010) presented an ap-

proximation algorithm with absolute competitive ratio of 2, which is

the best possible unless P = NP. For the online multiple-strip packing

problem, Ye et al. (2011) designed both randomized and determinis-

tic online algorithms with competitive ratios better than the previous

bound 10 presented by Zhuk (2006).

2. The instance construction

In this section, we first describe the construction of new modi-

fied BBK sequences Ln = ( J1, . . . , Ji, . . . ) in order to get a new lower

bound for the competitive ratio of online strip packing, where each

item Ji denotes a rectangle of height Ji and width w( Ji). In the end of

this section, we will give the reason why we design this type of our

sequences.

Assume that there exists a ρ−competitive online algorithm A with

ρ < (3 + √
5)/2. Since Brown et al. (1982) derived a lower bound 2,

we suppose that ρ > 2 in the following. We can define Ln as the list

of items

(P1, s1, . . . , sk, R1, P2, F2, R2, . . . , Pn−1, Fn−1, Rn−1, Pn).

The sequences Ln consist of four types of rectangles:Pi, si, Ri, Fi. For

any i, Pi and Ri are thin items with small widths. Ri is special in Ln, be-

cause it may not appear in Ln. For any i, Ri is included in the sequence

only if the online algorithm A satisfies some conditions which we will

state in the following. For any i, si is a rectangle with small height

and near-full width. After the online algorithm A packed the rectan-

gle P1, s1, . . . , si, . . . arrived online and may be packed either below

P1 or above P1. When the first rectangle si(denoted by sk) is packed

above P1, new si doesn’t arrive. For any i ≥ 2, Fi is a block item with

the full width of 1. For convenience, sk is also said to be F1, i.e. sk = F1.

We can describe the sequences Ln (see Fig. 1) with

• P1 = 1, w(P1) = δ0

• si = θ + ε, w(si) = 1 − δi for i = 1, . . . , k;

• Ri = (ρ−1)(xi+Pi+yi)
ρ + ε for i = 1, . . . , n − 1;

• Pi = (xi−1 + Pi−1 + yi−1) + ε for i = 2, . . . , n;

• F2 = max{min{x1 − ∑k−1
i=1 si,

P2
ρ }, min{y1,

P2
ρ }, x2} + ε;

• Fi = max{min{yi−1,
Pi
ρ }, Fi−1, xi} + ε for i = 3, . . . , n − 1.

sk
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Fig. 2. An optimal packing.

The value ε is a small positive value and θ = −ρ2+3ρ−1

2(ρ−1)2 (Note that

θ > 0 if ρ < (3 + √
5)/2). The value δ0 is a positive number no more

than 1
2n−1 and δi = δi−1

4n for i = 1, . . . , k. For i ≥ 2, w(Ri−1) = w(Pi) =
2δk and w(Fi) = 1. The value x1 denotes the distance between P1 and

the bottom of the strip, and xi denotes the distance between Fi−1 and

Pi for i = 2, . . . , n. The value y1 denotes the distance between P1 and

sk ,and yi denotes the distance between Pi and Fi for i = 2, . . . , n − 1.

For i = 1, R1 is included in the sequence if the following condition

holds: either x1 − ∑k−1
i=1 si >

P2
ρ or y1 >

P2
ρ (Note that the condition in-

dicates that x1 + y1 >
P2
ρ , i.e. x1 + y1 >

P1
ρ−1 .). For i ≥ 2, Ri is included

in the sequence if xi + yi >
Pi

ρ−1 . In the next section, we will show that

Ri must be packed below Fi if the competitive ratio of A is less than

(3 + √
5)/2.

The sole function of the positive number ε is to ensure the struc-

ture of any online packing. For convenience, we assume that ε is small

enough to be omitted from the analysis.

We now show that Fi should be packed above Pi for i ≥ 2.

For i = 2, if R1 is included in the sequence which means either

x1 − ∑k−1
i=1 si >

P2
ρ or y1 >

P2
ρ , then F2 ≥ P2

ρ . Thus x1 + P1 + y1 − R1 =
x1+P1+y1

ρ = P2
ρ ≤ F2 which means F2 couldn’t be packed below sk.

Since F2 ≥ x2, the online algorithm A must pack F2 above P2. If R1

is not included in the sequence, then x1 − (s1 + · · · + sk−1) ≤ P2
ρ

and y1 ≤ P2
ρ . Thus, F2 = max{x1 − ∑k−1

i=1 si, y1, x2} which means

F2 should be packed above P2. For i ≥ 3, if Ri−1 is included

in the sequence, let bi−1 be the distance between Ri−1 and

Fi−1, then bi−1 ≤ xi−1 + Pi−1 + yi−1 − Ri−1 = xi−1+Pi−1+yi−1
ρ = Pi

ρ . So

Fi = max{min{yi−1,
Pi
ρ }, Fi−1, xi} ≥ max{min{yi−1, bi−1}, Fi−1, xi}

which means Fi should be packed above Pi. If Ri−1 is not included in

the sequence, then yi−1 ≤ Pi
ρ (note that xi−1 + yi−1 ≤ Pi−1

ρ−1 indicates

yi−1 ≤ Pi
ρ ). So Fi = max{min{yi−1,

Pi
ρ }, Fi−1, xi} = max{yi−1, Fi−1, xi}

which also means Fi should be packed above Pi.

For the list ( J1, . . . , Ji), let A(Ji) denote the height of the packing by

the algorithm A and OPT(Ji) denote the height of the optimal off-line

packing. It is not difficult to determine OPT(Jj). We list them in the

following (see Fig. 2):

• OPT(P1) = 1;
• OPT(si) = P1 + ∑i

j=1 s j for i = 1, . . . , k;

• OPT(R1) = P1 + ∑k
j=1 s j or OPT(R1) = R1 + sk;

• OPT(Pi) = Pi + ∑i−1
j=1 Fj for i ≥ 2;

• OPT(Fi) = Pi + ∑i
j=1 Fj for i ≥ 2;

• OPT(Ri) = Ri + ∑i
j=1 Fj for i ≥ 2.
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