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a b s t r a c t

We generalize the idea of semi-self-financing strategies, originally discussed in Ehrbar (1990), and later

formalized in Cui et al (2012), for the pre-commitment mean-variance (MV) optimal portfolio allocation

problem. The proposed semi-self-financing strategies are built upon a numerical solution framework for

Hamilton–Jacobi–Bellman equations, and can be readily employed in a very general setting, namely con-

tinuous or discrete re-balancing, jump-diffusions with finite activity, and realistic portfolio constraints. We

show that if the portfolio wealth exceeds a threshold, an MV optimal strategy is to withdraw cash. These

semi-self-financing strategies are generally non-unique. Numerical results confirming the superiority of the

efficient frontiers produced by the strategies with positive cash withdrawals are presented. Tests based on

estimation of parameters from historical time series show that the semi-self-financing strategy is robust to

estimation ambiguities.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

1.1. Motivation

The mean-variance (MV) optimization criteria are popular for

portfolio allocation problems, due to their intuitive nature (Basak &

Chabakauri, 2010; Bielecki, Pliska, & Zhou, 2005; Leippold, Trojani,

& Vanini, 2004; Li & Ng, 2000; Vigna, 2014; Wang & Forsyth, 2010;

Zhou & Li, 2000). Under these criteria, risk is quantified by variance,

so that investors aim to maximize the expected terminal wealth of

their portfolios, given a risk level. Hence, the results can be easily in-

terpreted in terms of the trade-off between the risk and the expected

terminal portfolio wealth.

Mean-variance optimization typically yields pre-commitment

strategies, which are time inconsistent (Basak & Chabakauri, 2010;

Björk & Murgoci, 2010; Cui & Li, 2010; Cui, Li, Wang, & Zhu, 2012;

Wang & Forsyth, 2011; 2012). However, it has been shown by Vigna

(2014) that pre-commitment strategies can also be viewed as a

target-based optimization which involves minimizing a quadratic
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loss function. Hence, these strategies are appropriate in the context of

pension plan investment and insurance applications (Bauerle, 2005;

Delong & Gerrard, 2007; Delong, Gerrard, & Haberman, 2008; Jose-

Fombellida & Rincon-Zapatero, 2008). In fact, this phenomenon has

been also discussed in the literature of MV hedging (see, for exam-

ple Schweizer, 2010). In addition, it has also been pointed out that, in

the context of optimal trade execution, the pre-commitment strategy

optimizes trading efficiency as measured in practice (Almgren, 2012).

Previous work on pre-commitment MV optimal portfolio alloca-

tion has been dominated by the analytic (closed-form) approach.

(See, for example, Bielecki et al., 2005; Li and Ng, 2000; Øksendal and

Sulem, 2009; Zhou and Li, 2000, among many others.) However, this

approach is not feasible when realistic constraints, such as no trading

if insolvent and limited leverage, are imposed. In addition, from a risk

management point of view, it is useful to model jumps in asset prices.

In this case, it is necessary to impose a liquidation condition if the

portfolio wealth jumps into the insolvent region. As a result, in these

general situations, a fully numerical approach must be employed. It is

important to highlight that realistic portfolio constraints and jumps

are found to have pronounced effects on the efficient frontiers (Dang

& Forsyth, 2014; Wang & Forsyth, 2010).

It is standard that MV strategies for the optimal portfolio al-

location problem are self-financing, i.e. no exogenous infusion or

withdrawal of cash are allowed under any circumstances. Central

to our discussion is the concept of semi-self-financing. The term
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semi-self-financing strategy is usually employed to refer to a strategy

that exploits either exogenous infusion or withdrawal of cash, but not

both. In our context, we strictly define a semi-self-financing strategy

as a strategy that uses only non-negative cash withdrawals.

Ehrbar (1990) is possibly the first published work that touches

upon the idea of semi-self-financing in the context of MV optimal

portfolio allocation. As illustrated in Ehrbar (1990), even for a single-

period model, it is possible to achieve a superior portfolio, i.e. a

portfolio having the same standard derivation, but higher expected

portfolio wealth, by not investing all of the initial wealth. It is fur-

ther argued in Ehrbar (1990) that the self-financing strategy is un-

realistic in the sense that it requires the investors “to invest all their

money, even if the additional investments do not add to their utility”.

By withdrawing part of the initial portfolio, the investors can achieve

superior results. It is also emphasized in Ehrbar (1990) that semi-self-

financing strategies are “not only more straightforward”, but also al-

low “investors to find better uses for the money they cannot invest”.

Recently, the idea of semi-self-financing in the context of uncon-

strained pre-commitment MV optimal portfolio allocation is formal-

ized in Cui and Li (2010) and Cui et al. (2012). In these papers, it

is shown that, if the portfolio wealth exceeds a threshold at a re-

balancing time, by removing a certain amount of cash from the port-

folio, one can obtain a portfolio having the same expected wealth and

standard deviation as the portfolio obtained by a self-financing MV

optimal strategy. In addition, the investor receives a bonus in terms

of a free cash flow.

1.2. Background and contributions

It is well-known that the MV optimal portfolio allocation problem

is a multi-criteria optimization problem. Following a standard scalar-

ization method for multi-criteria optimization, a single criterion can

be formed by a positively weighted sum of the criteria (Yu, 1974). The

resulting single-objective problem is referred to as the MV scalariza-

tion problem.

However, for MV optimization in general, and MV optimal portfo-

lio allocation in particular, dynamic programming is not directly ap-

plicable to the MV scalarization problem, due to the presence of the

variance term. To overcome this difficulty, an embedding technique

is proposed in Li and Ng (2000) and Zhou and Li (2000) to embed the

objective of the MV scalarization problem in a new single-objective

optimization problem, namely the embedded MV optimization prob-

lem. Intuitively, this idea can be viewed as a quadratic target invest-

ment strategy (Vigna, 2014). Note that the embedding approach can

be applied to general non-convex problems, in contrast to a Lagrange

multiplier formulation (Li, Xhou, & Lim, 2002). Non-convex problems

can arise if we consider non-linear effects, such as price impact (Tse,

Forsyth, & Li, 2014).

Optimal solutions with respect to the embedded MV optimization

problem can be obtained by solving an associated Hamilton–Jacobi–

Bellman (HJB) equation. It has been established in Li and Ng (2000)

and Zhou and Li (2000) that the MV scalarization optimal set is a sub-

set of the embedded MV objective set. However, there may be points

in the embedded MV objective set which are not in the MV scalar-

ization optimal set. Methods for eliminating such spurious points are

discussed in Dang, Forsyth, and Li (2015) and Tse et al. (2014). In the

rest of the paper, to indicate the optimality of a strategy with respect

to the MV scalarization problem and to the embedded MV optimiza-

tion problem, we respectively use the terms scalarization MV opti-

mal/optimality and embedded MV optimal/optimality.

The main contributions of the paper can be summarized as

follows.

• In this paper, we generalize the idea of semi-self-financing

strategies developed in Cui and Li (2010), Cui et al. (2012) and

Ehrbar (1990) for the pre-commitment MV optimal portfo-

lio allocation problem. Using the results in Dang and Forsyth

(2014), Dang et al. (2015) and Tse et al. (2014), we formulate the

embedded MV optimization problem in terms of the numerical

solution of an HJB partial integro-differential equation (PIDE).

Utilizing a fully numerical approach, it is straightforward to

consider continuous or discrete re-balancing, jump-diffusions

with finite activity, and realistic portfolio constraints. We de-

termine an embedded MV optimal strategy over all possible

semi-self-financing strategies which satisfy the constraints.
• We find certain cases where it can be proved that an embedded

MV optimal semi-self-financing strategy involves withdrawing

cash from the portfolio. These cases occur when the portfo-

lio wealth exceeds the discounted optimal terminal wealth of

the embedded problem. An embedded MV optimal strategy in

this case is to (i) withdraw a specified amount of cash, and

(ii) invest the remaining amount in the risk-free asset. How-

ever, embedded MV optimal semi-self-financing strategies are

generally not unique.
• Using the numerical schemes discussed in Dang and Forsyth

(2014) for the solution of the HJB equation, and using the re-

sults in Dang et al. (2015) and Tse et al. (2014), we can guaran-

tee that scalarization MV optimal points, i.e. those that are on

efficient frontiers, can be generated from embedded MV opti-

mal points.
• We include several numerical examples to illustrate the supe-

riority of strategies with positive cash withdrawals in a gen-

eral setting where continuous and discrete re-balancing, real-

istic constraints, and jump-diffusions (with finite activity) are

allowed.
• We estimate the jump diffusion parameters based on an 89

year time series of market return data. The jump parameter

estimates are sensitive to the estimation method. However,

the simulated investment results using the semi-self-financing

mean-variance strategies are robust to estimated model pa-

rameter ambiguities.

2. Preliminaries

2.1. Underlying processes, allowable portfolios, and admissible sets

Since the portfolio can be either continuously or discretely re-

balanced, we denote the set of discrete re-balancing times by

TM = {t0 = 0 < t1 < · · · < tM = T}.
Let

T =
{

[0, T ] continuous re-balancing,

TM discrete re-balancing.

Define t− = t − ε, where ε → 0+, i.e. t− is instant of time just be-

fore the (forward) time t, t ∈ [0, T].

For simplicity, we assume that there are only two assets available

in the financial market, namely a risky asset and a risk-free asset. We

denote by S(t) and B(t) the amounts invested in risky and risk-free

assets, respectively, at time t, t ∈ [0, T]. We denote by ξ the random

number representing the jump multiplier. When a jump occurs, we

have S(t) = ξS(t−). As a specific example, in this paper, we consider

ξ following a log-normal distribution p(ξ ) given by Merton (1976)

p(ξ) = 1√
2πζξ

exp

(
− ( log (ξ) − ν)2

2ζ 2

)
, (2.1)

with mean ν and standard deviation ζ , with E[ξ ] = exp (ν + ζ 2/2),
where E[·] denotes the expectation operator, and κ = E[ξ ] − 1. In the

absence of control, S follows the process:

dS(t)

S(t−)
= (μ − λκ)dt + σdZ + d

(
πt∑

i=1

(ξi − 1)

)
. (2.2)
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