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a b s t r a c t

The planar maximal covering location problem (PMCLP) concerns the placement of a given number of facili-

ties anywhere on a plane to maximize coverage. Solving PMCLP requires identifying a candidate locations set

(CLS) on the plane before reducing it to the relatively simple maximal covering location problem (MCLP). The

techniques for identifying the CLS have been mostly dominated by the well-known circle intersect points set

(CIPS) method. In this paper we first review PMCLP, and then discuss the advantages and weaknesses of the

CIPS approach. We then present a mean-shift based algorithm for treating large-scale PMCLPs, i.e., MSMC. We

test the performance of MSMC against the CIPS approach on randomly generated data sets that vary in size

and distribution pattern. The experimental results illustrate MSMC’s outstanding performance in tackling

large-scale PMCLPs.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

Covering problems in facility location have received considerable

research interest due to its applicability in the real world (Farahani,

Asgari, Heidari, Hosseininia, & Goh, 2012). Each facility is able to

provide services within a given critical distance, i.e., the coverage

radius. A customer is considered served from a facility if the dis-

tance between them is less than or equal to the facility’s coverage

radius. In reality, however, budget limits often constrain the num-

ber of service facilities to be located. This gives rise to the maxi-

mal covering location problem (MCLP) (Church & Velle, 1974), which

seeks to maximize the coverage of customer demands by siting a

given number of new facilities. In the last 40 years, MCLP and its

extensions have been widely applied to study various location is-

sues such as planning emergency facilities (e.g., Schilling, Revelle,

Cohon, & Elzinga, 1980; Eaton, Daskin, Simmons, Bulloch, & Jansma,

1985; Murray & Tong, 2007), siting telecommunications equipment

(e.g., Akella, Delmelle, Batta, Rogerson, & Blatt, 2010; Oztekin, Pajouh,

Delen, & Swim, 2010; Shillington & Tong, 2011), location for business
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(e.g., Jones & Simmons, 1993; Pastor, 1994), and public services (e.g.,

Hougland & Stephens, 1976; Otto & Boysen, 2014).

Most MCLP models have been built under the assumption that

the candidate locations of the new facilities are known in advance.

In other words, facilities can only be installed in discrete nodes.

Some researchers (e.g., Mehrez, 1983; Mehrez & Stulman, 1982, 1984;

Church, 1984) have relaxed this constraint and extended the discrete

version of MCLP to consider facility location in a continuous space,

i.e., facilities are allowed to be placed anywhere on a plane. This prob-

lem is known as the planar maximal covering location problem (PM-

CLP), originally defined in Church (1984). For PMCLP, it is possible

to attain a greater demand coverage because many more desired lo-

cations are available for selection when making strategic facility lo-

cation decisions such as infrastructure investment (Murray & Tong,

2007; Wei, 2008). Murray and Tong (2007) suggested that more gen-

eral representations (points, lines or polygons) of demand can also

be optimally served in a region. They introduced the extended pla-

nar maximal covering location problem-Euclidean (EPMCE) and ap-

plied it to emergency warning sirens siting in Dublin. Matisziw and

Murray (2009) formulated the 1-facility continuous maximal cover-

ing problem (CMCP-1), where demand is considered as continuously

distributed within a whole region (convex or non-convex). They ad-

dressed CMCP-1 by generating the medial axis, which can be viewed

as a geometrical representation of the region. Later in Wei (2008), the
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multi-facility case of CMCP was solved based on Voronoi diagrams

and the geometric properties of the region. Recently, several applica-

tions of PMCLP have been reported by geographical researchers (see

for example Liu & Hodgson, 2013; Wei, Murray, & Batta, 2014; Wei &

Murray, 2014b).

To solve PMCLP, it is natural to reduce it to MCLP by finding a finite

number of potential sites on the plane. With this set of discrete sites,

MCLP can be solved by either exact or heuristic approaches. In other

words, PMCLP can be addressed in two phases: I – identify a candi-

date locations set (CLS) and II – use exact or non-exact methods to

address the degraded PMCLP for coverage maximization. Therefore,

it is critical to identify a good CLS for solving PMCLP. We can analyze

a CLS from various angles: (1) Coverage. The objective of the MCLP is

to find a solution with maximal coverage. Hence, the coverage of the

candidates in a CLS is an important consideration. (2) Size of the CLS.

MCLP is NP-hard (Downs & Camm, 1996), whose size is determined

by the numbers of demand nodes, potential locations, and facilities to

be located. For a very large-scale MCLP, we have to apply heuristic al-

gorithms to search for the optimal solution. However, using such non-

exact methods may cause a loss of coverage (obtaining a local optimal

solution only), or even fail to produce a feasible solution. Therefore,

given a large number of demand points, it is highly desirable to re-

duce the number of potential sites in Phase I before solving MCLP. In

addition to the above two essential principles, decision-makers in re-

ality may also be concerned with the following objectives. (3) Time

to generate the CLS. Is there an efficient way to generate the CLS in

Phase I? This research question has largely been neglected in the lit-

erature, yet it is a significant issue to address in real life. For exam-

ple, when a severe disaster (e.g., a storm, an earthquake etc.) takes

place, it is an urgent task for the government to decide where to site

search and rescue (SAR) stations in order to provide medical and re-

habilitation services for as many victims as possible in a large area.

The scale of such a problem can be remarkably large as the num-

bers of SAR stations and victims may be numerous. In the context

of such emergency situations, the decision-maker must consider not

only the above features of the candidate locations, but also the effi-

ciency of solving such large-scale PMCLPs in real time. (4) Average

distance to demand. Given that serving faraway demands will incur

a high cost, planners may also be concerned about the distances be-

tween the covered demand points to the closest facility.

A three-step procedure, often referred to as the circle intersect

points set (CIPS) method in the literature, has been the dominat-

ing technique for creating the CLS since it was introduced by Church

(1984). First, this method produces a demand and intersection points

set (DIPS1) by exploiting the geometric properties of coverage. The

circles are centered to cover demand locations with predefined cov-

erage radii under the Euclidean distance measure. The second step

in Phase I, which is optional if the DIPS only has few members, is

to remove all the dominated points from the DIPS in order to re-

duce the size of the CLS. It has been shown that the reduced DIPS,

i.e., the final CLS, contains at least one optimal solution to the PM-

CLP (Church, 1984). Given this CLS, the last step is to solve MCLP in

Phase II. The CIPS method greatly facilitates coverage maximization

and contributes significantly to size reduction. Consequently, it has

been widely applied and extended in many studies (e.g., Younies &

Wesolowsky, 2004; Murray & Tong, 2007; Canbolat & Massow, 2009;

Yildiz, Akkaya, Sisikoglu, & Sir, 2011) as a standard approach to ad-

dress PMCLP. However, the CIPS method has high time complexity

and is generally unable to handle large-scale PMCLPs (see Section 2.2

for the details).

1 Note that this set was also called CIPS in Church (1984) and thus the term CIPS had

two meanings: the whole method and the points set. To avoid confusion, hereafter in

this paper we use the term CIPS to denote the method, and DIPS to call the demand

and intersection points set generated by the CIPS method at the first step. We thank an

anonymous referee for this helpful suggestion.

In this study we propose a mean-shift based algorithm for treat-

ing large-scale PMCLPs, i.e., MSMC. In MSMC, we introduce a re-

vised mean-shift procedure that is less time consuming, and hence

more suitable for solving large PMCLPs, than the traditional CIPS

method. The mean-shift procedure has been successfully adapted to

various application domains, such as cluster analysis in computer vi-

sion and image processing (Comaniciu & Meer, 2002). To the best of

our knowledge, this work is the first attempt to solve location prob-

lems using the mean-shift procedure. The advantages for choosing

the mean-shift procedure to identify the CLS for PMCLP are discussed

in detail in Section 3.2.

The remainder of the paper is organized as follows: in Section 2

we review PMCLP, and discuss the pros and cons of the traditional

CIPS approach. In Section 3 we briefly introduce the mean-shift pro-

cedure and the core of the proposed MSMC algorithm. We present

each step of MSMC in detail. In Section 4 we compare the perfor-

mance of MSMC against the CIPS method on randomly generated data

sets that vary in size and distribution pattern, and discuss the experi-

mental results to reveal the various performance aspects of the MSMC

and CIPS approaches. In Section 5 we conclude the paper, discuss the

research limitations, and suggest topics for future research.

2. Problem formulation and the CIPS method

PMCLP seeks to maximize the demand coverage on a plane. Unlike

MCLP which locates facilities on a network or discrete locations, PM-

CLP concerns the siting of a given number of facilities anywhere on a

plane; in other words, the number of potential sites for location is in-

finite in PMCLP. To address this issue, there is a need to generate a set

of discrete potential locations from the continuous space, essentially

reducing PMCLP to MCLP. To recap, solving PMCLP can be executed in

two phases, namely I – identify a CLS and II – solve the MCLP given

the CLS.

In this section we first present the MCLP formulation, from which

PMCLP naturally arises. We then detail Phase I of the CIPS approach

to solve PMCLP proposed by Church (1984). Finally, we discuss the

advantages and shortcomings of the CIPS method.

2.1. The maximal covering location problem

MCLP has been mathematically formulated by Church and Velle

(1974) as follows:

Maximize Z =
∑
i∈I

wiYi. (1)

subject to∑
j∈Θi

Xj ≥ Yi, for all i ∈ I (2)

∑
j

Xj = p, (3)

Xj = {0, 1}, for all j ∈ J (4)

Yi = {0, 1}, for all i ∈ I (5)

where

i = index of demand points (entire set I);
j = index of facility locations (entire set J);

wi = weight of demand node i;
Θi = { j ∈ J | di j ≤ R};
di j = the shortest distance from i to j;

R = predefined coverage radius of facility;

p = number of facilities to be located;
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