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We present an integer linear programming formulation and solution procedure for determining the tightest

bounds on cell counts in a multi-way contingency table, given knowledge of a corresponding derived two-

way table of rounded conditional probabilities and the sample size. The problem has application in statistical

disclosure limitation, which is concerned with releasing useful data to the public and researchers while also

preserving privacy and confidentiality. Previous work on this problem invoked the simplifying assumption

that the conditionals were released as fractions in lowest terms, rather than the more realistic and compli-

cated setting of rounded decimal values that is treated here. The proposed procedure finds all possible counts

for each cell and runs fast enough to handle moderately sized tables.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

Statistical disclosure control is concerned with privacy guarantees

when releasing data that might otherwise identify, or reveal infor-

mation about, specific individuals or organizations. Releasing data in

summarized form greatly reduces disclosure risk, but does not elim-

inate the risk altogether. In particular, a contingency table of fre-

quency counts potentially reveals information if the table includes

any cells having small or zero counts. On the other hand, a table is less

useful for statistical inference if it overly aggregates information. This

trade-off generally leads to the release of a modified or aggregated

version of the table that carries somewhat less information than the

original. In deciding which particular form to release, a crucial step is

to determine the tightest possible bounds that can be inferred about

the individual cell counts in the original table. Such bounds can be

used to assess both the disclosure risk and the statistical utility of

the released information. The present paper addresses the open ques-

tion of how to calculate these bounds when the contingency table is

released in the form of a two-way table of rounded conditional fre-

quencies.

A two-way contingency table is a two-dimensional array of whole

numbers, and the row and column sums of such an array are referred

to as marginal counts. The conditional row probabilities are given by

dividing each entry in the array by the marginal sum for its row. As
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an example, the contingency tables shown in Tables 1(a) and 1(b)

have the same sample size (sum of all entries) and also lead to the

same conditional row probabilities, which are shown in Table 1(c).

Wright and Smucker (2014) showed that Tables 1(a) and 1(b) are the

only contingency tables of sample size 48 having the row condition-

als shown in Table 1(c). Because Tables 1(a) and 1(b) have the same

second row, knowledge of Table 1(c) and the sample size therefore

exposes the actual counts in the second row. The question is whether

those counts could be obscured somewhat by converting the exact

fractions in Table 1(c) into rounded decimal expressions. In Section 3

we show that two-digit rounding does obscure the counts in this ex-

ample whereas three-digit rounding does not.

Various approaches are used to limit the disclosure risk of con-

tingency tables, such as choosing a more heavily aggregated sum-

mary (e.g., marginal counts only), suppressing some cells altogether,

or perturbing cell counts slightly (Hundepool, Domingo-Ferrer, Fran-

coni, Giessing, Nordholt, Spicer, & de Wolf, 2012). These often rely

on operations research techniques to limit risk and evaluate risk-

utility trade-offs (Almeida & Carvalho, 2005; Castro, 2006; 2011;

2012; Cox, 1995; Cox & Ernst, 1982; Fischetti & Salazar-González,

1999; Hernández-García & Salazar-González, 2014; Kelly, Golden,

& Assad, 1990; Kelly, Golden, Assad, & Baker, 1990; Muralidhar &

Sarathy, 2006; Salazar-González, 2004; 2005; 2006; 2008). Over the

past decade researchers have also explored the possibility of releasing

observed conditional probabilities, which retain some statistical util-

ity insofar as odds and ratios of odds are preserved (Slavković, 2010).

To date, the work on disclosure risk for tables of conditionals has

focused primarily on two-way contingency tables, such as two-way
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Table 1

Two contingency tables, (a) and (b), with sample size 48 and row

conditionals (c).

rearrangements of multi-way tables in which some subset of the ob-

served variables are treated as the conditions (i.e., predictors), some

are treated as the responses, and perhaps others are omitted alto-

gether (by aggregating over their values) (Fienberg & Slavković, 2005;

Slavković, 2004; Smucker & Slavković, 2008; Smucker, Slavković, &

Zhu, 2012).

Our problem description and methods are framed in terms of two-

way contingency tables, but the same approach can also be used to

obtain cell bounds on multi-way contingency tables that have been

reshaped as two-way tables by designating some variables as predic-

tors, other variables as responses, and perhaps omitting some vari-

ables altogether. We refer the reader to Smucker et al. (2012), Wright

and Smucker (2013), Wright and Smucker (2014) for more informa-

tion on how and why such reshaping might be performed.

Here is a concrete example of a multi-way table using public data

that nevertheless provides a nice illustration of how several vari-

ables might be grouped into predictor, response, or omitted variables.

We consider an 8-way table (N = 48, 842) from the 1993 U.S. Cur-

rent Population Survey (CPS), a monthly survey that collects demo-

graphic and other data of interest. Table 2 gives information about

the qualitative variables measured in this study. Imagine that data

such as these comprised, say, all the adults in a given small city. There

might be some concern in releasing it in full detail. In particular, small

cell counts (including zeros) could potentially be used to identify the

salary range of specific individuals. Other variables in this data set

might also be considered sensitive information for some people, de-

pending on their personal circumstances. Among the eight variables

here, we would almost always consider age, race and sex as natural

choices for possible predictors, whereas the other variables (except

salary) could be considered either a predictor or response depending

on the question at hand. Likewise, any of the variables might conceiv-

ably be omitted (implying an aggregation of counts). Moreover, levels

within a variable might be combined into a smaller number of levels,

such as reducing the three age ranges (for variable X1 of Table 2) to

two age ranges. In any case, the value of row conditionals now be-

comes clearer: over all people in the study who satisfy a given set of

demographic predictors, the row conditionals tell us what proportion

have a given (say) education level and salary level. The actual counts

could well be of less interest than the proportions to decision-makers

and the general public. But privacy considerations and statistical in-

ference would require recovering information about those underlying

counts from the stated proportions.

Table 2

CPS variables and their levels.

Variable Levels

X1 Age < 25, 25–55, > 55

X2 Employment Gov’t, private, self-employed, other

X3 Education < HS, HS, college, bachelor, bachelor+

X4 Marital status Married, unmarried

X5 Race Non-white, white

X6 Sex Female, Male

X7 Hours worked < 40, 40, > 40

X8 Salary < 50, 50+

The mathematical structure of the corresponding cell-bounding

problem was recently elucidated for the simpler context in which

conditional probabilities are presented as unrounded fractions

Slavković, Zhu, and Petrović, Wright and Smucker (2013). Under that

idealization, it was demonstrated that the (upper or lower) bounding

problem for each cell can be reduced to an integer linear knapsack

problem. Wright and Smucker (2014) subsequently showed that cell

bounds and possible counts for an entire two-way table of unrounded

conditionals can be obtained quickly with an algorithm that shares

intermediate solution information among large groups of cells in the

table. They used that capability to explore disclosure risk for various

rearrangements of the data represented in Table 2 under the assump-

tion that a data snooper somehow determined the true unrounded

fractions for each conditional probability.

The present article examines the two-way cell-bounding problem

in the more complicated and realistic setting of rounded condition-

als. Several of the works cited above (especially Smucker et al., 2012,

Slavković, Zhu, & Petrović) provide light commentary, heuristics or

preliminary results on issues relating to cell-bounding from rounded

conditionals. So far there have been no substantive attempts to pro-

vide a general procedure for identifying tightest cell bounds. Here we

formulate the bounding problem for each cell as a pair of integer lin-

ear optimization problems and show how these can be decomposed

into two types of simpler subproblems. One type of subproblem is

solvable in closed form and the other can be addressed by adapt-

ing some of the ideas presented in Wright and Smucker (2014). The

decomposition provides useful knowledge about the cell-bounding

problem structure and identifies all possible cell counts rather than

merely the cell bounds (which is the most that could be obtained

with integer programming methods). We also provide simple exam-

ples showing that: (a) rounded conditionals can lead to considerably

wider tightest bounds than the corresponding unrounded fractions,

and (b) a single-digit change in the rounding precision sometimes

means the difference between revealing many cell counts and reveal-

ing none.

A full discussion of how to evaluate statistical utility and disclo-

sure risk goes beyond the scope of this paper, but the basic issues are

as follows. On the one hand, disclosure risk is minimized by avoid-

ing the revelation of small counts (magnitude 3 or smaller, say) in

the contingency table, and this in turn suggests that very narrow cell

bounds are undesirable. This is easily understood, so our discussion

of the examples in this paper tends to focus on disclosure. On the

other hand, statistical utility refers to the ability to perform estima-

tion or hypothesis testing and obtain results only slightly weaker than

what one could obtain by applying standard statistical methods to the

actual table of counts. Intuitively, such utility is maximized by hav-

ing a more accurate representation of the underlying table, but the

picture is more complicated than that. Salazar-González (2004) (also

Salazar-González, 2005) has presented a fine overview of statistical

disclosure limitation and its trade-offs from an operations research

perspective.

Our method finds bounds on row marginals along with infor-

mation about individual cell counts, with the latter then implying

bounds on the remaining marginals. Performing inference on the ba-

sis of such bounds is an area of ongoing research, and a few meth-

ods have been proposed for the purpose (see Slavković, Zhu, and

Petrović, Dobra, 2012 and references cited therein). Given that the im-

plied bounds on marginals could be quite wide when disclosure risk

is avoided, we are led to ask how badly data utility might be com-

promised. Slavković and Lee (2010) have provided some encouraging

results on this last point. They proposed a method for disclosure lim-

itation based on the following idea: round the actual row conditional

probabilities to nearby decimal-place approximations, rewrite those

approximate conditionals as fractions themselves, and then randomly

select a table of counts from the collection of contingency tables for

which the new fractions are the conditional probabilities. Releasing
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