
European Journal of Operational Research 248 (2016) 372–383

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

The traveling salesman problem with time-dependent service times
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a b s t r a c t

This paper introduces a version of the classical traveling salesman problem with time-dependent service

times. In our setting, the duration required to provide service to any customer is not fixed but defined as

a function of the time at which service starts at that location. The objective is to minimize the total route

duration, which consists of the total travel time plus the total service time. The proposed model can handle

several types of service time functions, e.g., linear and quadratic functions. We describe basic properties for

certain classes of service time functions, followed by the computation of valid lower and upper bounds. We

apply several classes of subtour elimination constraints and measure their effect on the performance of our

model. Numerical results obtained by implementing different linear and quadratic service time functions on

several test instances are presented.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

The purpose of this paper is to introduce, model and solve a ver-

sion of the classical traveling salesman problem (TSP) with time-

dependent service times (TSP-TS), an extension of the asymmetric

TSP. Öncan, Altınel, and Laporte (2009), and Roberti and Toth (2012)

present comprehensive reviews of the available mathematical formu-

lations for the asymmetric TSP, some of which will be extended to

model the TSP-TS.

In most of the research on the TSP, service times are either ig-

nored, or assumed to be constant and thus accounted for in travel

times. However in practice, it can easily be observed that service

times vary according to several factors which naturally depend on

the time of day (e.g., availability of parking spaces, accessibility to

the customer at its location, and so on). In the TSP-TS, the service

time required at each customer is not fixed a priori, but depends

on the start time of service. The TSP-TS aims to minimize the total

route duration including the total travel time and the total service

time. This problem can formally be defined on a connected digraph

G = (N, A). In this graph, N = {0, 1, . . . , n, n + 1} is the set of nodes

and A = {(i, j) | i, j ∈ N, i �= j} is the set of arcs. Nodes 0 and n + 1

correspond to the starting and ending points of the salesman’s tour,

respectively. Each node in N \ {0, n + 1} corresponds to a distinct
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customer. With each arc (i, j) in A is associated a travel time tij. Each

customer i has a service time defined as a continuous function si(bi),

where bi corresponds to the start time of service at that customer

location.

In the TSP literature, time-dependency is usually addressed in

terms of travel times. The interested reader is referred to Gouveia and

Voß (1995) who present a classification of formulations proposed for

the time-dependent TSP. Picard and Queyranne (1978), Vander Wiel

and Sahinidis (1996), and Bigras, Gamache, and Savard (2008) con-

sider a time-dependent TSP in which the travel time between any

two nodes depends on the time period of the day. It is further as-

sumed that when the salesman starts traversing an arc, no transition

from one time period to the next takes place during this travel, in

other words there is no transient zone. More specifically, the travel

time from node i to node j depends on the time period in which node

i is visited. This problem with discrete travel times can be viewed

as a single machine scheduling problem with sequence-dependent

setup times. Picard and Queyranne (1978) provide three integer pro-

gramming formulations for the time-dependent TSP. The authors an-

alyze the relationships between the relaxations of these models by

comparing their lower bounds. It is observed that the shortest path

relaxation (related to the first model) is very similar to a formula-

tion proposed by Hadley (1964) for the classical TSP. Vander Wiel and

Sahinidis (1996) propose an algorithm for the time-dependent TSP,

based on applying Benders decomposition to a mixed-integer linear

programming formulation. The authors also develop a network-based

algorithm to identify Pareto-optimal dual solutions of the highly

degenerate subproblems. Results indicate that the performance
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of the algorithm is considerably improved by employing these

Pareto-optimal solutions. In Bigras et al. (2008), the integer program-

ming formulations of the time-dependent TSP are extended to solve a

single machine scheduling problems with sequence-dependent setup

times. Two separate objectives are considered: minimizing total flow

time and minimizing total tardiness. Instances with 45 and 50 jobs

can be solved exactly by the proposed branch-and-bound algorithm.

A main difference between our problem and those presented in

the papers mentioned above (Bigras et al., 2008; Gouveia & Voß,

1995; Picard & Queyranne, 1978; Vander Wiel & Sahinidis, 1996) lies

in the way of modeling the time-dependent component. In these pa-

pers, a discrete travel time matrix is employed, which defines the

travel time along each arc with respect to the position of that arc

in the tour. In other words, time-dependency is associated with the

visiting order of customers, not with the arrival time or the depar-

ture time. In our problem, however, service duration is defined as a

continuous function of the time at which service starts. This defini-

tion makes our problem different from the time-dependent versions

studied in Bigras et al. (2008), Gouveia and Voß (1995), Picard and

Queyranne (1978), Vander Wiel and Sahinidis (1996), and thus the

methods proposed in these papers are not applicable to our problem.

Cordeau, Ghiani, and Guerriero (2014) consider a time-dependent

TSP in which the predetermined time horizon is partitioned into

a number of time intervals, and the average travel speed on each

arc during each interval is known. The travel time on each arc is

then computed by a procedure introduced by Ichoua, Gendreau,

and Potvin (2003), and a branch-and-cut procedure is developed to

solve the problem. The proposed algorithm is capable of solving in-

stances with up to 40 nodes. In principle, a special case of our prob-

lem with linear service times can be solved by the algorithm of

Cordeau et al. (2014). In that paper, travel speed functions are de-

fined by employing the degradation of the congestion factors and

the authors report that their algorithm works as long as the values

of these factors are set within a given interval (approximately [0.7,

1.0]). In our case, if we consider a linear service time function, small

service times occur early in the route and large service times occur

towards the end. The former case translates into high degradation of

congestion factors and the latter case translates into low degradation

of congestion factors, which corresponds to values well outside the

interval considered in Cordeau et al. (2014). Furthermore, our model

can solve instances in which the FIFO property does not hold whereas

this property is required for the algorithm proposed in Cordeau et al.

(2014).

In terms of the service cost, Tagmouti, Gendreau, and Potvin

(2007), Tagmouti, Gendreau, and Potvin (2010), Tagmouti, Gendreau,

and Potvin (2011) consider time-dependency within the scope of the

Capacitated Arc Routing Problem (CARP). The classical CARP aims to

serve a set of required arcs at minimum cost, using a fleet of capaci-

tated vehicles based at the depot. The three above-mentioned papers

focus on a version of the CARP where each arc has a time-dependent

service cost but a fixed service time. Tagmouti et al. (2007) develop

a column generation algorithm, and Tagmouti et al. (2010, 2011) pro-

pose heuristics.

To the best of our knowledge, the TSP-TS has never been consid-

ered previously. In contrast to what is done in the papers just men-

tioned, we can handle several types of service time functions, such

as linear and quadratic functions. Moreover, time-dependent service

times are included into the model not only through the objective

function (e.g., models with time-dependent travel times), but also

through the constraints. More specifically, the service time cannot be

incorporated into the arc durations.

The remainder of this paper is organized as follows. In Section 2,

we describe properties of the service time function and provide the

computation of a valid lower bound on the total service time of an

optimal solution to our problem. In Section 3, we propose a formu-

lation for the TSP-TS, together with three variants based on different

forms of subtour elimination constraints. We also present the compu-

tation of a lower bound on the bigM which is employed in our model.

Section 4 reports computational results corresponding to different

subtour elimination constraints and different service time functions.

This section also provides the computation of a valid upper bound

on the total route duration of an optimal solution. Finally, our main

findings and conclusions are highlighted in Section 5.

2. Service time function

In this section, we present the certain properties of the service

time function si(bi) at node i.

2.1. First-In-First-Out property

The first property is related to the First-In-First-Out (FIFO) princi-

ple which states that if service at node i starts at a time bi, any service

starting at a later time b′
i

at that node cannot be completed earlier

than bi + si(bi).

Proposition 2.1. si(bi) satisfies the FIFO property if and only if
dsi(bi)

dbi

≥ −1.

Proof. (→ necessity)

If si(bi) satisfies the FIFO property, then

bi + si(bi) ≤ b′
i + si(b′

i),

for all b′
i
> bi. The above statement can be rewritten as

si(b′
i) − si(bi) ≥ −(b′

i − bi),

where b′
i
= bi + δ and δ > 0. The latter inequality yields

si(bi + δ) − si(bi) ≥ −δ,

si(bi + δ) − si(bi)

δ
≥ −1,

lim
δ→0

si(bi + δ) − si(bi)

δ
≥ lim

δ→0
−1,

dsi(bi)

dbi

≥ −1.

(← sufficiency)

It is given that si(bi) is continuous on [bi, b′
i
] where b′

i
> bi. From

the mean value theorem, we know that there exists at least one point

b∗
i

in (bi, b′
i
) such that

dsi(b∗
i
)

db∗
i

= si(b′
i
) − si(bi)

b′
i
− bi

.

If
dsi(b∗

i
)

db∗
i

≥ −1 for all b∗
i

in (bi, b′
i
), then

si(b′
i
) − si(bi)

b′
i
− bi

≥ −1,

−si(b′
i) + si(bi) ≤ b′

i − bi,

bi + si(bi) ≤ b′
i + si(b′

i),

which means that the FIFO property is satisfied. �

Note that Proposition 2.1 holds for any service time function. At

this point, it is worth observing that a TSP solution is not always op-

timal for the TSP-TS, even when we apply a service time function

that satisfies the FIFO property starting from the first customer in the

route. To illustrate, suppose that there are three customers (denoted
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