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a b s t r a c t

We consider an online matching problem with concave returns. This problem is a generalization of the tra-

ditional online matching problem and has vast applications in online advertising. In this work, we propose a

dynamic learning algorithm that achieves near-optimal performance for this problem when the inputs arrive

in a random order and satisfy certain conditions. The key idea of our algorithm is to learn the input data pat-

tern dynamically: we solve a sequence of carefully chosen partial allocation problems and use their optimal

solutions to assist with the future decisions. Our analysis belongs to the primal-dual paradigm; however, the

absence of linearity of the objective function and the dynamic feature of the algorithm makes our analysis

quite unique. We also show through numerical experiments that our algorithm performs well for test data.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

In traditional optimization models, inputs are usually assumed to

be known and efficient algorithms are sought to find the optimal so-

lutions. However, in many practical cases, data does not reveal itself

at the beginning. Instead, it comes in an online fashion. For example,

in many revenue management problems, customers arrive sequen-

tially and each time a customer arrives, the decision maker has to

make some irrevocable decisions (e.g., what product to sell, at what

prices) for this customer without knowing any of the future inputs.

Such a regime is often called online optimization. Online optimiza-

tion has gained much attention in the research community in the past

few decades due to its applicability in many practical problems, and

much effort has been directed toward understanding the quality of

solutions that can be obtained under such settings. For an overview

of the online optimization literature and its recent developments, we

refer the readers to Borodin and El-Yaniv (1998), Buchbinder and Naor

(2009) and Devanur (2011).

In this paper, we consider a special type of online optimization

problem - an online matching problem. Online matching problems

are considered as fundamental problems in online optimization the-

ory and have important applications in the online advertisement

allocation problems. For a review of online matching problems, we

refer the readers to Mehta (2012). In the problem we study, there is

an underlying weighted bipartite graph G = (I, J, E) with weights bij
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for each edge (i, j) ∈ E. The vertices in J arrive sequentially in some

order, and whenever a vertex j ∈ J arrives, the set of weights bij is re-

vealed for all i ∈ I, (i, j) ∈ E. The decision maker then has to match j

to one of its neighbors i, and a value of bij will be obtained from this

matching. In our problem, the decision maker’s gain from each vertex

i is a function of the total matched value to this vertex, and his goal

is to maximize the total gain from all vertices. Mathematically, the

problem can be formulated as follows (assume |I| = m, |J| = n, and

let bi j = 0 for (i, j) �∈E):

maximizex

m∑
i=1

Mi

(
n∑

j=1

bi jxi j

)

s.t.

m∑
i=1

xi j ≤ 1, ∀ j

xi j ≥ 0, ∀i, j,

(1)

where xij denotes the fraction of vertex j that is matched to vertex i.1

In (1), the coefficient b j = {bi j}m
i=1

is revealed only when vertex j ar-

rives, and an irrevocable decision x j = {xi j}m
i=1

has to be made before

observing the next input. For each i, Mi(·) is a nondecreasing concave

function with Mi(0) = 0. In this paper, we assume that Mi(·)s are con-

tinuously differentiable.

As mentioned earlier, online matching problems have a very im-

portant application in the online advertisement allocation problem,

1 We allow fractional allocations in our model. However, our proposed algorithms

output integer solutions. Thus all our results hold if one confines to integer solutions.
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which we will later refer to as the Adwords problem. In the Adwords

problem, there are m advertisers (which we also call the bidders).

A sequence of n keywords are searched during a fixed time horizon.

Based on the relevance of the keyword, the ith bidder would bid a cer-

tain amount bij to show his advertisement on the result page of the

jth keyword. The search engine’s decision is to allocate each keyword

to one of the m bidders (we only consider a single allocation in this

paper). Note that each allocation decision can only depend on the in-

formation earlier in the arrival sequence but not on any future data.

As pointed out in Devanur and Jain (2012), there are several practical

motivations for considering a concave function of the matched bids

in the Adwords problem. Among them are convex penalty costs for

under-delivery in search engine-advertiser contracts, the concavity

of the click-through rate in the number of allocated bids observed in

empirical data and fairness considerations. In each of the situations

mentioned above, one can write the objective as a concave function.

We refer the readers to Devanur and Jain (2012) for a more thorough

review of the motivations for this problem. It is worth noting that

there is a special case of this problem where Mi(x) = min{x, Bi}. In

this case, one can view that the bidder has a budget Bi and the rev-

enue from each bidder is bounded by Bi.

One important question when studying online algorithms is the

assumptions on the input data. In this work, we adopt a random per-

mutation model. More precisely, we assume:

1. The total number of arrivals n = |J| is known a priori.

2. The weights {bij} can be adversarially chosen. However, the order

that j arrives is uniformly distributed over all the permutations.

The random permutation model has been adopted in much recent

literature in the study of online matching problems, see, e.g., Agrawal,

Wang, and Ye (2014); Devanur and Hayes (2009); Feldman, Hen-

zinger, Korula, Mirrokni, and Stein (2010), etc. It is equivalent to say-

ing that a set of B = {b̃1, b̃2, . . . , b̃n} is arbitrarily chosen beforehand

(unknown to the decision maker). Then the arrivals b1, b2, . . . , bn are

drawn randomly without replacement from B. The random permu-

tation model is an intermediate path between using a worst-case

analysis and assuming each input data is drawn independently and

identically distributed (i.i.d.) from a certain distribution. On one

hand, compared to the worst-case analysis (see, e.g., Buchbinder,

Jain, & Naor, 2007; Devanur & Jain, 2012; Feldman, Korula, Mirrokni,

Muthukrishnan, & Pal, 2009; Mehta, Saberi, Vazirani, & Vazirani,

2005), the random permutation model is practically reasonable yet

much less conservative. On the other hand, the random permutation

model is much less restrictive than assuming the inputs are drawn

i.i.d. from a certain distribution (Devanur, 2011). Also, the assumption

of the knowledge of n is necessary for any online algorithm to achieve

near-optimal performance (see Devanur & Hayes, 2009). Therefore,

for large problems with relatively stationary inputs, the random per-

mutation model is a good approximation and the study of such mod-

els is of practical interest. Next we define the performance measure

of an algorithm under the random permutation model:

Definition 1 (c-competitiveness). Let OPT be the optimal value for

the offline problem (1). An online algorithm A is called c-competitive

in the random permutation model if the expected value of the online

solutions by using A is at least c times the optimal value of (1), that

is

Eσ

[
m∑

i=1

Mi

(
n∑

j=1

bi jxi j(σ, A)

)]
≥ cOPT ,

where the expectation is taken over uniformly random permutations

σ of 1, . . . , n, and xij(σ , A) is the ijth decision made by algorithm A

when the inputs arrive in order σ .

In Devanur and Jain (2012), the authors propose an algorithm for

the online matching problem with concave returns that has a con-

stant competitive ratio under the worst-case model (the constant de-

pends on the forms of each Mi(·)). They also show that a constant

competitive ratio is the best possible result under that model. In

this paper, we propose an algorithm under the random permutation

model, which achieves near-optimal performance under some condi-

tions on the input.

Our main result is stated as follows:

Theorem 1. Fix ε ∈ (0, 1/2). There exists an algorithm (Algorithm DLA)

that is 1 − ε competitive for the online matching problem with concave

returns Mi(·)s under the random permutation model if

n ≥ �

(
max

{
log (m/ε)

εb̄2
,

m2 log (m2n/ε)F(M, η)

ε3b̄

})
, (2)

where b̄ = 1
n mini{∑n

j=1 bi j}, η = mini, j{bi j|bi j>0}
maxi, j bi j

, and F(M, η) is a con-

stant that only depends on each Mi(·) and η.

In condition (2), b̄ can be viewed as the average bid value of a bid-

der over time. Given that each bidder is at least interested in some

fractions of the keywords, this average will go to a certain constant

as n becomes large. Also, η can be viewed as the ratio between the

value of the smallest non-zero bid and the highest bid. In practice,

this is often bounded below by a constant by enforcing a reserve price

and a maximum price for any single bid. The exact functional form

of F(M, η) is somewhat complicated, and is given in Proposition 1.

Just to give an example, if we choose Mi(x) = xp (0 < p < 1), then

F(M, η) = 2

η(2−p)/(1−p) . Therefore, condition (2) can be viewed as sim-

ply requiring the total number of inputs is large, which is often the

case in practice. For example, in the Adwords problem, n is the num-

ber of keyword searches in a certain period, and for instance, Google

receives more than 5 billion searches per day. Even if we focus on a

specific category, the number can still be in the millions. Thus, this

condition is reasonable. We note that most learning algorithms in

the literature make similar requirements, see Agrawal et al. (2014);

Devanur and Hayes (2009), and Molinaro and Ravi (2014). Further-

more, as we will show in our numerical tests, our algorithm performs

well even for problems with sizes that are significantly smaller than

the condition requires, which validates the potential usefulness of our

algorithm.

To propose an algorithm that achieves near-optimal performance,

the main idea is to utilize the observed data in the allocation process.

In particular, since the input data arrives in a random order, using the

past input data and projecting it into the future should present a good

approximation for the problem. To mathematically capture this idea,

we use a primal-dual approach. We obtain the dual optimal solutions

to suitably constructed optimization problems and use them to assist

with future allocations. We first propose a one-time learning algo-

rithm (OLA, see Section 2) that only solves an optimization problem

once at time εn. By carefully examining this algorithm, we prove that

it achieves near-optimal performance when the inputs satisfy certain

conditions. However, the conditions are stronger than those stated in

Theorem 1. To improve our algorithm, we further propose a dynamic

learning algorithm (DLA, see Section 3). The dynamic learning algo-

rithm makes better use of the observed data and updates the dual so-

lution at a geometric pace, that is, at time εn, 2εn, 4εn and so on. We

show that these resolvings can lift the performance of the algorithm

and thus prove Theorem 1. As one will see in the proof of the DLA,

the choice of the resolving points perfectly balances the trade-off be-

tween exploration and exploitation, which are the main trade-offs in

such types of learning algorithms.

It is worth mentioning that a similar kind of dynamic learning al-

gorithm has been proposed in Agrawal et al. (2014) and further stud-

ied in Wang (2012) and Molinaro and Ravi (2014). However, those

works only focus on linear objectives. In our analysis, the nonlinear-

ity of the objective function presents a non-trivial hurdle since one

can no longer simply analyze the revenue generated in each time
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