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This paper concerns the problem of decomposing a network flow into an integral path flow such that the

length of the longest path is minimized. It is shown that this problem is NP-hard in the strong sense. Two

approximation algorithms are proposed for the problem: the longest path elimination (LPE) algorithm and

the balanced flow propagation (BFP) algorithm. We analyze the properties of both algorithms and present the

results of experimental studies examining their performance and efficiency.
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1. Introduction

Many network design problems rely on finding the best realiza-

tion of a traffic demand between a pair (or pairs) of telecommuni-

cation nodes (Pióro & Medhi, 2004). These problems are usually for-

mulated using graph theory with demand realizations represented as

network flows. Depending on the modeling approach a flow may de-

fine link’s bandwidth utilization (an arc flow approach) or data traffic

routes (a path flow approach). Both these approaches are equivalent

in such a sense that any path flow can be uniquely transformed to an

arc flow with the same total flow value and, conversely, for any arc

flow one can construct a path flow with the same total flow value,

although there may exist many such path flows (Ahuja, Magnanti, &

Orlin, 1993).

In most network design problems the arc flow approach is used

because it involves much less variables and many algorithms are

based on it (Du & Kabadi, 2006). However, an arc flow does not say

anything about routing which is essential from a viewpoint of prac-

tical demand realization. A path flow provides this information spec-

ifying paths (routes) through which traffic is routed. For an arc flow

there can be many corresponding path flows that may differ in many

important aspects. For example the number of routes or the number

of hops in routes of such path flows may be different which in turn

may affect network management costs or data transmission latency.

Thus, having an arc flow given for example as a solution of some net-
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work design problem there is a problem of decomposing it into such

a path flow that will have desired properties.

So far, researchers have focused mainly on finding flow decom-

positions with the minimum number of paths. Vatinlen, Chauvet,

Chrétienne, and Mahey (2008) show that this problem is NP-hard

in the strong sense. They define a saturating solution as such a flow

decomposition that can be obtained by iteratively adding one path

with assigned the maximum flow it can handle. Two approximation

algorithms giving saturation solutions were proposed. The first one

called Shortest Path Heuristic (SPH) add in each iteration the short-

est path. The second algorithm named Maximal Residual Path Capac-

ity Heuristic (MRPCH) add in each iteration a path that can handle

the largest flow. From the experimental studies (Hartman, Hassidim,

Kaplan, Raz, & Segalov, 2012; Vatinlen et al., 2008) it follows that MR-

PCH usually gives a decomposition with the smaller number of paths.

Here we analyze the problem of decomposing an arc flow into a

path flow with minimum length of the longest path. Such a min-

max criteria is often considered in many network problems (Li,

McCormick, & Simchi-Levi, 1990). By a path length we define the

number of arcs constituting the path. In telecommunication ter-

minology this corresponds to the number of route hops. We limit

our considerations to network flows represented by directed acyclic

graphs. We also assume that flows on all paths have to be integral.

This is a natural requirement if the demands have to be realized in

modular units such as in the case of optical networks (Pióro & Medhi,

2004). In the paper we show that this problem is NP-hard in the

strong sense. However, it should be noted that without the integrality

constraint the problem becomes easier to solve. It is because if frac-

tional flows are allowed then general linear programming methods

can be used to determine the maximum flow satisfying a constraint

on the maximum path length (Baier, 2003).
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Fig. 1. Network flow example.

Algorithms SPH and MRPCH can be used to obtain approximate

solutions of the considered problem. Hartman et al. (2012) even com-

pare these algorithms with regard to the length of the longest path in

flow decompositions showing in their experiments that better solu-

tions are computed by SPH. Here we propose two other approxima-

tion algorithms that efficiently determine flow decompositions with

the longest paths definitely shorter than the ones given by SPH.

The remainder of this paper is organized as follows. In the next

section we formally define a network flow decomposition problem.

Then, in Section 3 we analyze its properties. Sections 4 and 5 de-

scribe two classes of approximation algorithms which we propose to

tackle the problem. Section 6 is devoted to a special type of flows

called chain network flows. Some computational results are given in

Section 7. Finally, the last section concludes the paper.

2. Problem statement

Let us consider a network flow represented as a directed graph (V,

E) formed by a set of vertices V and a set of arcs E⊂V × V in which

source s ∈ V and sink t ∈ V vertices are distinguished. We denote the

number of vertices by n and the number of arcs by m. Following the

arc flow approach, each arc e ∈ E has assigned a flow value ce in such

a way that c = (ce)e∈E defines a valid s–t flow. We assume that the

graph (V, E) is acyclic and the flow values (ce)e ∈ E are positive integers.

We denote the total value of s–t flow by F. Fig. 1 presents an example

of a network flow. The numbers next to arcs are the flow values. The

total flow value for this network flow is 2.

Let P be the set of all paths between s and t. For an arc e ∈ E and

a path p ∈ P we define the coefficient δep equal to 1 if path p uses arc

e and 0 otherwise. A flow decomposition D of the network flow is a

set of paths PD⊆P with a flow value fp assigned to each path p ∈ PD in

such a way that∑
p∈PD

fp = F and
∑
p∈PD

δep fp = ce ∀e ∈ E. (1)

We will consider only integral flow decompositions in which all

paths have assigned flow values being positive integers.

For each path p ∈ P we define its length lp as the number of arcs

constituting this path, i.e. lp = ∑
e∈E δep. We also introduce the notion

of a flow decomposition length as the length of the longest path in

this decomposition. For a flow decomposition D we denote its length

by LD = maxp∈PD
lp.

For the network flow in Fig. 1 there exist two different flow de-

compositions. First one consists of two paths s − b − t and s − a − b −
c − t with unitary flow values. The lengths of those paths are 2 and

4, respectively. Thus the length of the first flow decomposition is 4.

In the second flow decomposition there are also two paths with uni-

tary flow values: s − a − b − t and s − b − c − t . However, the length

of both these paths and thus the flow decomposition length is 3. So

the second decomposition is shorter than the first one.

The problem that we are interested in this paper is to determine

for a given network flow an integral flow decomposition with the

minimum length. We call this problem Shortest Integral Flow Decom-

position Problem (SIFDP).

3. Computational complexity of SIFDP

Before we analyze the computational complexity of SIFDP we give

lower and upper bounds on the flow decomposition length.

Fig. 2. Network flow N3P corresponding to the 3-PARTITION problem.

Theorem 1. For any flow decomposition D⌈∑
e∈E ce

F

⌉
≤ LD ≤

∑
e∈E

ce. (2)

Proof. The first inequality holds because LD is an integer and∑
e∈E

ce =
∑
p∈PD

lp fp ≤
∑
p∈PD

LD fp = LD

∑
p∈PD

fp = LDF.

The second inequality follows from the fact that the length of any

s–t path in an acyclic graph is not greater than m. Thus LD ≤ m ≤
�e ∈ Ece. �

We now show that SIFDP is NP-hard in the strong sense.

Theorem 2. Problem SIFDP is NP-hard in the strong sense.

Proof. We will show that the 3-PARTITION problem which is NP-

complete in the strong sense (Garey & Johnson, 1979) can be pseudo-

polynomially reduced to the decision version of SIFDP.

In an arbitrary instance of the 3-PARTITION problem we are

given a positive integer B and a set of 3k positive integers A =
{a1, a2, . . . , a3k} such that

∑3k
i=1 ai = kB and B/4 < ai < B/2 for each

i = 1, 2, . . . 3k. The question is whether there exists a partition of A

into k disjoint subsets A1, A2, . . . , Ak such that the sum of the ele-

ments in each subset is B.

The network flow N3P corresponding to the instance of the 3-

PARTITION problem is shown in Fig. 2. The graph representing N3P

consists of a sequence of 3k segments. The ith segment corresponds

to the element ai. Each segment has two parallel paths: the lower

path with one arc and the upper path with ai + 1 arcs. The flow val-

ues at the lower path and the upper path are k − 1 and 1, respectively.

The total flow value for N3P is k. From the inequalities (2) it follows

that the length of any flow decomposition for this network flow must

be at least B + 3k.

Let us suppose that the 3-PARTITION problem has a solution. Then

we can obtain the optimal flow decomposition of N3P that contains k

paths each one having length B + 3k and unitary flow value. The jth

path of this decomposition consists of the upper arcs of the segments

that corresponds to the elements from the subset Aj and the lower

arcs of the remaining segments.

Conversely, suppose now that there exists a flow decomposition of

N3P which length is B + 3k. Then all paths of this decomposition must

have the same length. Moreover, since B/4 < ai < B/2 for i = 1, 2, . . . 3k

each path must contain the upper arcs from exactly 3 segments of

the network flow N3P. Because the graph representing N3P has 3k seg-

ments there must be k such paths each one having unitary flow value.

Moreover, the upper arcs of any segment have to be contained in ex-

actly one decomposition path. The decomposition paths indicate then

the feasible solution to 3-PARTITION with the subsets Aj including the

elements ai that correspond to the segments which upper arcs belong

to the jth path. �

As SIFDP is NP-hard in the strong sense we are interested in de-

veloping approximate algorithms that will provide solutions as close

to the optimal one as possible. We propose two classes of approxima-

tion algorithms: the path elimination algorithms and the flow prop-

agation algorithms. By A(N) we denote the length of the decomposi-

tion determined by an algorithm A for a flow N. Likewise, we denote
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