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a b s t r a c t

There is increased interest in deploying charging station infrastructure for electric vehicles, due to the in-

creasing adoption of such vehicles to reduce emissions. However, there are a number of key challenges for

providing high quality of service to such vehicles, stemming from technological reasons. One of them is due

to the relative slow charging times and the other is due to the relative limited battery range. Hence, develop-

ing efficient routing strategies of electric vehicles requesting charging to stations that have available charging

resources is an important component of the infrastructure. In this work, we propose a queueing modeling

framework for the problem at hand and develop such routing strategies that optimise a performance metric

related to vehicles’ sojourn time in the system. By incorporating appropriate weights into the well-known dy-

namic routing discipline “Join-the-Shortest-Queue”, we show that the proposed routing strategies not only

do they maximise the queueing system’s throughput, but also significantly mitigate the vehicle’s sojourn

time. The strategies are also adaptive in nature and responsive to changes in the speed of charging at the

stations, the distribution of the vehicles’ point of origin when requesting service, the traffic congestion level

and the vehicle speed; all the above are novel aspects and compatible with the requirements of a modern

electric vehicle charging infrastructure.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

Over the last few years a strong push is occurring to reduce the use

of hydrocarbons in the transportation sector. This trend is supported

by the latest advances in battery and power electronics technology,

along with government mandates on energy independence and re-

silience, as well as an increased emphasis on a smarter infrastructure.

It is strongly enabled by the introduction of electric vehicles (EVs) and

their close relatives Plug-in Hybrid Electric Vehicles (PHEVs) by major

car manufacturers that have drastically increased consumer choices.

According to a recent report of the International Energy Agency

(2012a), the transportation ‘ accounted for 6.7 gigatons of emitted

CO2 or 22 percent of the world’s total. Further, global fuel demand

for transportation is projected to grow approximately 40 percent by

2035 International Energy Agency (2012b), driven by the rapid adop-

tion of automobiles in the fast growing economies of China, India

and more recently in the African continent. EV/PHEVs represent an

innovative technology that could help address both environmental

concerns and longer term reduce dependence on fossil fuels. How-

ever, fast EV adoption relies on a number of socio-economic, as well
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as technological factors. Key socio-economic factors include strin-

gent emissions regulations, rising fuel prices and financial incentive

programs OECD/International Energy Agency (2013), while the most

pressing technological one is the large scale deployment of an effi-

cient and well managed charging station infrastructure. At present,

there are diverging forecasts on the growth rate of the EV popula-

tion International Energy Agency (2011), although there is consen-

sus that it is going to represent a sizable portion (at least 7 percent

in the US) of the national fleet by 2025–30. Obviously, penetration

rates could be significantly higher than these estimates depending

on how the aforementioned socio-economic and technological fac-

tors evolve. Further, the impact of fast adoption of EVs on utilities

and on the stability of the grid is mostly dependent on regional or

even local penetration rates; e.g., Southern California Edison has pro-

jected a penetration rate larger than 7 percent in its service territory

already by 2020.

The key concern regarding rapid adoption of EVs by utilities is that

they could have a disruptive impact on the power grid, since under

Level 1 charging conditions, an EV represents a load equivalent to 50

percent of that of a house, while under Level 2 conditions it repre-

sents a 2.5-fold equivalent load. Obviously, the extent of their impact

will depend on the degree and local/regional density of their penetra-

tion, charging requirements and the time of the day they are charged.

However, studies have shown that a fleet of EVs can be effectively
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powered by the underutilised electric power grid during the off-peak

hours with little need to increase the energy delivery capacity of

the existing grid infrastructure (Taylor, Maitra, Alexander, Brooks, &

Duvall, 2010) if scheduled carefully. Hence, the literature has focused

on coming up with efficient schedules of charging EVs overnight, e.g.

an incentive based energy consumption controlling scheme was in-

troduced in Caron and Kesidis (2010), and a direct load control (DLC)

scheme for residential energy control was discussed in Ruiz, Cobelo,

and Oyarzabal (2009); Wu, Wang, and Goel (2010). To achieve a sus-

tainable electrification of the transportation sector, a robust charging

station infrastructure needs to be in place that would not interfere

with regular grid operations and at the same time address EV driver’s

range anxiety resulting from the limited ability to recharge EVs in a

time commensurable with filling the tank of a gas-powered vehicle.

Specifically, UCLA Smart Grid Energy Research Center argues that if

25 percent of all vehicles were pure EVs, the current US power grid

would be challenged in meeting the demand for power. For some util-

ities, even adding Level-2 charging infrastructure may overload dis-

tribution transformers during peak hours. On the driver’s quality-of-

service issue, note that charging EVs is an inherently slow process

(it takes between 20 minutes to several hours to fully charge them,

depending on the technology used (Lukic, Cao, Bansal, Rodriguez, &

Emadi, 2008)), thus requiring careful planning and control to accom-

modate customers.

In this study, we focus on the development of efficient routing

strategies for a general model of EV charging systems with fully ran-

dom environments, so as to provide quality service to EV drivers and

release their range anxiety. This directly leads to the goal of min-

imising the strategy’s performance metrics related to “sojourn time”

(including EV’s travel time, waiting time for charging, and charg-

ing time), which is different from the well-known Vehicle Routing

Problem (VRP) (Dantzig & Ramser, 1959; Pillac, Gendreau, Guéret, &

Medaglia, 2013) and Dynamic Traveling Repairman Problem (DTRP)

(Bertsimas & Ryzin, 1990, 1993) that involve design of vehicle-

delivery routes from a depot to a set of scattered demand locations,

so as to minimise the overall routing cost (e.g., travel time/distance)

under various side constraints (Baldacci, Toth, & Vigo, 2007;

Ferrucci, Block, & Gendreau, 2013; Jaillet & Wagner, 2008; Kergosien,

Lenté, Piton, & Billaut, 2011; Laporte, 2007, 2009; Li, Mirchandani, &

Borenstein, 2009; Pavone, Frazzoli, & Bullo, 2007; Pillac et al., 2013;

Solomon, 1987). We assume that service demands are placed by the

EV drivers according to a general process, and the distribution of

the locations of where EVs originate is arbitrary, although its sup-

port is determined by a compact Euclidean service region. There are

K charging stations located in the service region, and each of them

has a known charging speed (usually in kiloWatt-hours). Upon the

request of service, each EV is directed to one of the stations accord-

ing to some routing policy and heads to the station at a constant

speed. After entering the station, EVs queue up to be serviced and

their charging times are assumed to be randomly distributed from an

arbitrary distribution. We also assume that real-time communication

between vehicles and the decision maker is possible (e.g., advanced

mobile phones or global positioning systems (GPS) can be integrated

into the vehicle devices). These flexible assumptions are suitable for

real-life settings, but also require more complicated routing strate-

gies (e.g., dynamic/online routing) for solving the designated optimi-

sation problem.

Note that the way we formulate the problem allows us to depict

the EV service system as an acyclic network with two layers of feed-

forward parallel queues (see Section 2 for details), thus facilitating

the development of routing strategies and fundamental analysis re-

garding throughput and stability. For example, it was shown that the

dynamic routing strategy “Join-the-Shortest-Queue” (JSQ) along with

a scheduling policy based on “maximal matching” maximises the

throughput of a general acyclic network and achieves system stability

defined by the uniform mean recurrence time (Hung & Michailidis,

2012). Although the EV system described here has different charac-

teristics (see Section 2 for details), the JSQ strategy appears to retain

the property of throughput maximisation (see Section 4 for details).

However, to minimise a key performance metric -the vehicle’s so-

journ time in the system- the routing strategy must in addition be re-

sponsive to other system states and control parameters. In this work,

we show that the vehicle’s sojourn time can be significantly mitigated

by incorporating the following two factors as “weights” into the JSQ

policy: (i) the rate at which vehicles can be charged at the stations

and (ii) the distance of the EV to each station upon its service request.

Further, its performance is adaptive to the change of several control

parameters, such as the speed of charging stations, the distribution of

demand locations, the traffic congestion level, and the vehicle speed.

It should be noted that the idea to integrate the elements of queue

length, service rate and distance to the charging facility in the de-

velopment of routing strategies for queueing systems has not been

proposed in the literature, to the best of our knowledge.

The remainder of this paper is organised as follows. Section 2 de-

picts a general model for the EV service system with fully random en-

vironments, characterises the system’s maximum throughput based

on the capacity of each service station, and defines system stability

via the uniform mean recurrence time property. Section 3 introduces

some routing policies, some of which have been used in different set-

tings in the literature, while others have to property of maximising

the system’s throughput. The performance of some of these policies

is assessed numerically in Section 5. Section 4 establishes that the

proposed weighted versions of JSQ policies indeed maximise the sys-

tem’s throughput under fairly weak stochastic assumptions on the ar-

rival and service (charging) processes. Since appropriate dependence

structures are allowed for the arrival, service, and routing processes, a

technique called the “perturbed Lyapunov function method” (Hung &

Michailidis, 2012; Kushner, 1967) was employed to obtain the result.

Section 5 evaluates the proposed throughput-maximising policies in

terms of their sojourn-time metrics under various control parameter

settings through a simulation study. Some concluding remarks are

presented in Section 6.

2. Model description and system stability

Suppose there are K EV charging stations placed in a compact Eu-

clidean region R ⊂ R
2, whose locations are denoted by S1, S2, . . . , SK .

Service demands for charging are placed by EV drivers at random lo-

cations in region R according to a general random process with rate

λ, and we assume the demand locations follow an arbitrary distribu-

tion F over the region R. Upon request of service, each EV is guided to

one of the charging stations according to some routing policy π and

heads to the station, for simplicity, at a constant speed v > 0. Note that

the latter assumption is made to simplify the exposition, although in

practice v can be a non-decreasing function of λ; e.g. one may imag-

ine that vehicles slow down when the system is heavily loaded. We

also assume that assigned EV routes do not change, while the EVs are

in route to the assigned station. Finally, to simplify the formulation of

the problem, we assume that each charging station comprises of an

infinite buffer first-in-first-out (FIFO) queue and a charger with ran-

dom service times. When the EV is charged (service completed), it

leaves the system immediately.

Denote the set of EV service demand times by A = {a1, a2, . . .}
and the set of times that EVs have finished charging at the station

by D = {d1, d2, . . .}. The collection of all event times is then denoted

by A ∪ D = {t1, t2, . . .}, where ti represents either the demand arrival

or system departure time. If ti ∈ A, then its associated demand loca-

tion is denoted by li, li ∈ R. For any routing policy π , the associated

routing process is given by

Ik(ti) =
{

1 if ti ∈ A and the vehicle is directed to station k,

0 otherwise,
(1)
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