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a b s t r a c t

We present a general construction that allows to extend a given subcopula to a copula in such a way that

the extension is affine on some specific segments of the copula domain. This construction is hence applied to

provide convergence theorems for approximating a copula in strong convergence and in D1-metric (related

to the Markov kernel representation of a copula).
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1. Introduction

Copulas are multivariate probability distribution functions whose

univariate margins are uniformly distributed on the unit interval

[0, 1]. They represent one of the building blocks of (modern) mul-

tivariate analysis since Sklar showed that the probability law of any

random vector X can be expressed as a composition of the distribu-

tion functions of all one-dimensional margins and a suitable copula

(Faugeras, 2013; Rüschendorf, 2009; Sklar, 1959). This fact has pro-

vided to be useful in various applications including decision science

(see, e.g., Abbas, 2013) and reliability theory (see, e.g., Gupta, Misra,

& Kumar, 2015; Navarro, Pellerey, & Crescenzo, 2015; Rychlik, 2010).

Now, while the copula associated with X is unique when the mar-

gins are continuous, in the non-continuous case we should take into

account that various copulas can be associated with X. In fact, every

copula associated with a non-continuous random vector X is uniquely

determined only on a Borel set A⊂[0, 1]d. This fact poses the natural

question of how it is possible to construct a copula given some par-

tial information about the values that it assumes on specific subsets

of the domain [0, 1]d (see, for instance, Carley & Taylor, 2002). In this

respect, one of the most common extension procedures is given by

the multilinear interpolation (or checkerboard construction), origi-

nally proposed by Schweizer and Sklar (1974) and, further, developed

by Carley and Taylor (2002), and Genest, Nešlehová, and Rémillard
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(2014). In fact, as shown by Genest and Nešlehová (2007) and

Nešlehová (2007), this extension plays a central role in characteriz-

ing dependence concepts for discrete random vectors.

The aim of this paper is to contribute to the development of

extension procedures that include previously introduced method-

ologies (e.g., checkerboard), but are naturally presented in a high-

dimensional framework. Our starting point is represented by the fact

that many of these constructions can be generally classified as patch-

work copulas (Durante, Fernández-Sánchez, & Sempi, 2013; Durante,

Saminger-Platz, & Sarkoci, 2009). Roughly speaking, a patchwork

copula is any copula that is obtained by modifying the probability

measure associated with a given copula CB in several given subsets

of its domain in a way that is specified by other copulas C1, . . . ,Cn.

Following this approach, we present hence a general construction

that allows to extend a specific subcopula to a copula (Section 2).

Moreover, we also provide some convergence results in order to

check how these extensions approximate (in different metrics) a

given copula (Section 3).

2. Basic definitions and properties

Throughout the paper, the natural number d ≥ 2 will denote

the dimension, I := [0, 1], B(Id) the Borel-σ -field on I
d, and λd the

Lebesgue measure on B(Id).

For basic definitions and properties of measure theory (includ-

ing Disintegration Theorem), we refer to Ash (2000) and Billingsley

(1995). For basic definitions and properties of copulas, we refer to

Durante and Sempi (2015) and Nelsen (2006).
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We recall that the space of copulas is in one-to-one correspon-

dence with the space of all probability measures μ on B(Id) that are

d-fold stochastic, i.e. such that all one-dimensional marginals μπi co-

incide with λ, the Lebesgue measure on B(I), whereby μπi denotes

the push-forward of μ under the ith canonical projection π i.

In order to introduce our concepts, we need some preliminary no-

tations.

Given a fixed natural number d ≥ 2, let n1, . . . ,nd be d natural

numbers, and, for every k ∈ {1, . . . , d}, let ak
0
, ak

1
, . . . , ak

nk
be numbers

in I such that

0 = ak
0 < ak

1 < · · · < ak
nk

= 1 .

Consider the mesh

D := ×d
k=1{ak

0, ak
1, . . . , ak

nk
} = ×d

k=1Ik,

which divides I
d into

∏d
i=1 ni d-boxes

B(i1,i2,...,id)
:=

[
a1

i1
, a1

i1+1

]
×

[
a2

i2
, a2

i2+1

]
· · · ×

[
ad

id
, ad

id+1

]
, (1)

where for every k ∈ {1, 2, . . . , d}, ik ∈ {0, . . . , nk − 1}. The norm of the

mesh D is defined by ‖D‖ = maxk,ik
(ak

ik+1
− ak

ik
). A mesh D′ is a re-

finement of D when D ⊆ D′.
Moreover, for every k ∈ {1, 2, . . . , d} and every ik ∈ {0, 1, . . . ,

nk − 1}, consider the function f k
ik

: I → I given by

f k
ik
(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x < ak
ik
,

x − ak
ik

ak
ik+1

− ak
ik

, ak
ik

≤ x ≤ ak
ik+1

,

1, x > ak
ik+1

.

(2)

For the multi-index i = (i1, . . . , id) ∈ I = {0, 1, . . . , n1 − 1} × · · · ×
{0, 1, . . . , nd − 1}, we define fi : I

d → I
d via

fi(u) = ( f 1
i1
(u1), . . . , f d

id
(ud)).

We are now able to give the following definition.

Definition 2.1. Let S be a subcopula with domain D. For each i ∈ I ,

consider a measure μi on B(Id). Define the measure μ on B(Id) such

that for every Borel set B ∈ B(Id), one has

μ(B) =
∑
i∈I

βi μi( fi(B ∩ Bi)), (3)

where β i is equal to the S-volume of Bi, i.e. βi = VS(Bi).

Notice that the set-function μ is a bona fide measure because each

μi is a measure. Moreover, the following result holds.

Proposition 2.1. Under the assumptions of Definition 2.1, suppose that,

for each i ∈ I , μi is a probability measure such that μi(]0, 1[d) = 1.

Then μ defined by (3) is a probability measure. Moreover, if each μi is

d-fold stochastic, so is μ.

Proof. Obviously, μ is a measure and, since each μi has no mass on

the border of I
d, it follows easily that the total mass of μ is 1.

Moreover, consider the case when each μi is d-fold stochastic. Let

u1 ∈ I such that a1
i1

≤ u1 ≤ a1
i1+1

. Let

B = [0, u1] × I
d−1 =

(
[0, a1

i1
] × I

d−1
)

∪
(
∪j∈I ′

(
Bj ∩ B

))
,

where the set I ′ is formed by all indices j = ( j1, . . . , jd) with j1 = i1.

Thus, it holds

μ
(
[0, u1] × I

d−1
)

= S(a1
i1
, 1, . . . , 1) +

∑
j∈I ′

βj

u1 − a1
i1

a1
i1+1

− a1
i1

= a1
i1

+
u1 − a1

i1

a1
i1+1

− a1
i1

(
a1

i1+1 − a1
i1

)
= u1,

because, for every j ∈ I ′,

μj

(
fj(B ∩ Bj)

)
= μj

([
0,

u1 − a1
i1

a1
i1+1

− a1
i1

]
× I

d−1

)
=

u1 − a1
i1

a1
i1+1

− a1
i1

.

By repeating the above procedure for each coordinate, we have the

desired assertion. �

Roughly speaking, the measure μ defined by (3) is obtained by

putting together several measures, each of them acting in one single

set of a given partition of the domain I
d . The only constraint is pro-

vided by the subcopula S, which fixes the value of the measure at each

box whose vertices belong to the mesh D.

From now on, we are interested in measures μ of type (3) that are

generated by d-fold stochastic measures (μi)i∈I . In this case, the ex-

plicit expression of the copula C related to μ is given by the following

result.

Proposition 2.2. Under the assumptions of Definition 2.1, suppose that,

for each i ∈ I , μi is a d-fold stochastic measure. Moreover, Ci denotes

the copula associated to the measure μi. Then the copula associated to

the measure μ can be written, for every u ∈ Bi with i ∈ I , by

C(u) = S(a1
i1
, . . . , ad

id
) +

∑
j∈Ii

βjCj( fj(u)). (4)

Here the set Ii is formed by all indices j = ( j1, . . . , jd) with jk ≤ ik for

every k = 1, 2, . . . , d, and jk = ik for at least one index k.

Proof. Let u ∈ Bi. Then [0, u] can be decomposed into the following

union of boxes whose interiors are disjoint:

[0, u] =
(
[0, a1

i1
] × · · · × [0, ad

id
]
)

∪
(
∪j∈Ii

(Bj ∩ [0, u])
)
. (5)

Thus, we have

C(u) = μ
(
[0, a1

i1
] × · · · × [0, ad

id
]
)

+
∑
j∈Ii

βj μj( fj([a1
j1
, u1]

× · · · × [ad
jd
, ud])) = S(a1

i1
, . . . , ad

id
) +

∑
j∈Ii

βjCj( fj(u)),

which is the desired assertion. �

It easily follows that C = S on the mesh D. Moreover, let u =
(u1, a2

i2
, . . . , ad

id
) be in Bi. Let [0, u] be decomposed as in (5). If j ∈ I 1

i
,

then

βjCj( f 1
j1
(u1), f 2

j2
(a2

i2
), . . . , f d

jd
(ad

id
)) = βj

u1 − a1
i1

a1
i1+1

− a1
i1

.

Hence

C(u) − C(a1
i1
, a2

i2
, . . . , ad

id
) = μ([0, u]) − S(a1

i1
, a2

i2
, . . . , ad

id
)

=
u1 − a1

i1

a1
i1+1

− a1
i1

∑
j∈I 1

i

βj =
u1 − a1

i1

a1
i1+1

− a1
i1

μ
(
[a1

i1
, a1

i1+1] × [0, a2
i2

]

× · · · × [0, ad
id

]
)

=
u1 − a1

i1

a1
i1+1

− a1
i1

(
S(a1

i1+1, a2
i2
, . . . , ad

id
)

− S(a1
i1
, a2

i2
, . . . , ad

id
)
)
.

By repeating the above procedure for each coordinate, it follows that

the extension of the subcopula S to the copula C provided by (4) is lin-

ear along segments joining two points in the mesh D such that (d−1)
of their components are equal.

For such a reason, the copula C defined by (4) is called the L-

extension of S by means of (Ci)i∈I , where the prefix “L” indicates

that such extension is linear on specific segments of the copula do-

main. We write C = 〈D,Ci〉S
i∈I

or, with the measure notation, μ =
〈D,μi〉S

i∈I
.

Let C = 〈D,Ci〉S
i∈I

. If every Ci is absolutely continuous (respec-

tively, singular), then C is absolutely continuous (respectively, singu-

lar). In particular, if every Ci equals the independence copula �d, C
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