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a b s t r a c t

This paper discusses univariate density estimation in situations when the sample (hard information) is sup-

plemented by “soft” information about the random phenomenon. These situations arise broadly in operations

research and management science where practical and computational reasons severely limit the sample size,

but problem structure and past experiences could be brought in. In particular, density estimation is needed

for generation of input densities to simulation and stochastic optimization models, in analysis of simulation

output, and when instantiating probability models. We adopt a constrained maximum likelihood estima-

tor that incorporates any, possibly random, soft information through an arbitrary collection of constraints.

We illustrate the breadth of possibilities by discussing soft information about shape, support, continuity,

smoothness, slope, location of modes, symmetry, density values, neighborhood of known density, moments,

and distribution functions. The maximization takes place over spaces of extended real-valued semicontinu-

ous functions and therefore allows us to consider essentially any conceivable density as well as convenient

exponential transformations. The infinite dimensionality of the optimization problem is overcome by ap-

proximating splines tailored to these spaces. To facilitate the treatment of small samples, the construction of

these splines is decoupled from the sample. We discuss existence and uniqueness of the estimator, examine

consistency under increasing hard and soft information, and give rates of convergence. Numerical examples

illustrate the value of soft information, the ability to generate a family of diverse densities, and the effect of

misspecification of soft information.

Published by Elsevier B.V.

1. Introduction

It is recognized that statistical estimates can be improved greatly

by including contextual information to supplement the information

derived from data. We refer to the contextual information as soft in-

formation, in contrast to hard information derived from observations

(data). In this paper, we consider univariate probability density esti-

mation exploiting, in concert, hard and soft information. Although

our development, theoretical and numerical, makes no distinction

based on sample size, not surprisingly, it is when the sample size is

small that this fusion of hard and soft information plays a crucial role

in producing quality estimates. We limit the scope to densities of ran-

dom variables with distributions that are absolutely continuous with

respect to the Lebesgue measure on a bounded interval.

The need for estimating probability density functions is prevalent

across operations research and management science. For example,

an essential step in simulation analysis and stochastic optimization

∗ Corresponding author. Tel.: 1 831 656 2578, Fax: 1 831 656 2595

E-mail addresses: joroyset@nps.edu (J.O. Royset), rjbwets@ucdavis.edu

(R. J-B Wets).

is the generation of probability densities for input random variables;

see for example Barton, Nelson, and Xie (2010); Chick (2001); Freimer

and Schruben (2002). Density estimation is also needed when popu-

lating probability models and when analyzing simulation output be-

yond their typical first and second moments. In all these situations,

however, the sample available is typically extremely small due to

practical and computational limitations. One is usually forced to re-

strict the attention to parametric families of densities. In this paper,

we provide the theoretical foundations of an alternative approach

that brings in soft information about problem structure and past ex-

periences to obtain reasonable nonparametric density estimates even

for very small sample sizes. The approach has been successfully ap-

plied in the context of simulation output analysis Singham, Royset,

and Wets (2013), uncertainty quantification Royset, Sukumar, and

Wets (2013), as well as estimation of errors in forecasts for commod-

ity prices Wets and Rios (Under review) and electricity demand Feng,

Gade, Ryan, Watson, Wets, and Woodruff (2013); see also Rios, Wets,

and Woodruff (Under review).

A natural and widely studied approach to density estimation is to

adopt an M-estimator with additional constraints to account for soft

information. We continue this tradition by defining an estimator that

is an optimal solution of a constrained maximum likelihood problem.
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An appealing property of such estimators is that for any sample size,

an estimate is the best possible within the class of allowable functions

according to the given criterion (likelihood).

We trace the consideration of soft information in terms of

shape constraints at least back to Grenander (1956a), 1956b).

More recent studies of univariate log-concave densities include

Balabdaoui, Rufiback, and Wellner (2009); Dumbgen and Rufibach

(2009); Groenenboom and Wellner (1992); Jongbloed (1998); Pal,

Woodroofe, and Meyer (2007); Walther (2002), with computational

comparisons in Rufiback (2007); see also the review Walther (2009)

and, in the case of multivariate densities, e.g., Cule, Samworth, and

Stewart (2010a), 2010b). Convexity and monotonicity restrictions are

examined in Groenenboom, Jongbloed, and Wellner (2001); Meyer

(2012b) and monotonicity, monotonicity and convexity, U-shape, as

well as unimodality with known mode are studied in Meyer (2012b);

Meyer and Habtzghib (2011). Unimodal functions are also covered

in Hall and Kang (2005); Reboul (2005), with the former covering

U-shape as well. Monotone, convex, and log-concave densities are

dealt with in Birke (2009). Studies of k-monotone densities include

Balabdaoui and Wellner (2007), 2010); Gao and Wellner (2009). Den-

sities given as monotone transformations of convex functions are ex-

amined in Seregin and Wellner (2010). Convex formulation of a col-

lection of shape restrictions is discussed in Papp (2011); Papp and

Alizadeh (2014). We refer to the recent dissertation Doss (2013) and

the discussion in Cule, Samworth, and Stewart (2010b) for a more

comprehensive review and to Lim and Glynn (2012) for the related

context of shape-restricted regression.

Although these studies address important cases, there is no over-

arching framework that allows for a comprehensive description of

soft information formulated by a large variety of constraints. Initial

work in this direction is found in Wang (1996), which deals with para-

metric nonlinear least-squares regression subject to a finite number

of smooth equality and inequality constraints. That paper examines

the asymptotics of the least-squares estimator using the convergence

theory of constrained optimization, specifically epi-convergence. In

the context of constrained maximum likelihood estimation, Dong and

Wets (2007) establishes consistency of an estimator through a func-

tional law of large numbers and epi-convergence. The latter work is

an immediate forerunner to the present paper.

Having adopted a nonparametric constrained maximum like-

lihood framework, we face technical challenges along two axes.

First, one needs to deal with constrained optimization prob-

lems. Of course, in principle, constraints can be handled through

penalties and regularizations; see for example Good and Gaskin

(1971); Klonias (1982); Leonard (1978); de Montricher, Tapia, and

Thompson (1975); Silverman (1982); Thompson and Tapia (1990) and

more recently Bühlmann and van de Geer (2011); Eggermont and

LaRiccia (2001); Koenker and Mizera (2006), 2008), 2010); Meyer

(2012a); Turlach (2005). However, the equivalence and interpreta-

tions of such reformulations depends on the successful selection of

multipliers and penalty parameters which is far from trivial in prac-

tice, especially in the case of multiple constraints. In fact, poor selec-

tion of these multipliers and parameters may cause computational

challenges due to ill-conditioning of the resulting optimization prob-

lem as well as significant deterioration of the quality of the result-

ing density estimate. Moreover, it becomes unclear in what sense,

if any, an estimator is “best” when an otherwise natural criterion

such as likelihood is mixed with nonzero penalty terms; see Dong

and Wets (2007) for further discussion. It is also possible to devise

specialized algorithms such as the iterative convex minorant algo-

rithm Groenenboom and Wellner (1992); Jongbloed (1998) to ac-

count for certain constraints or modify “unconstrained” estimators

such as those based on kernels; Hall and Kang (2005) handles uni-

modality, Birke (2009) considers monotonicity, convexity, and log-

concavity, and Davies and Kovac (2004) aims to reduce the number

of modes; see Racine (2015); Wolters (2012) for computational tools.

Again, it is unclear in what sense, if any, such estimates are “best”

in the case of finite samples. Moreover, it is challenging to generalize

these approaches to handle other types of soft information. We direct

the reader to Tsybakov (2009) and references therein for treatments

of kernel estimators including a discussion of optimality.

The second challenge with a nonparametric constrained maxi-

mum likelihood framework is the infinite-dimensionality of the re-

sulting optimization problem. Naturally, there is a computational

need to consider families of approximating densities characterized

by a finite number of parameters. The method of sieves Chen (2007);

Geman and Hwang (1982); Grenander (1981) provides a framework

for constructing, typically, finite-dimensional approximating subsets

that are gradually refined as the sample size grows and that in the

limit is dense in a function space of interest. However, difficulties

arise from three directions. First, with our focus on small sample

sizes, the linkage between sample size and sieves becomes unten-

able. Second, in order to allow for the possibility of discontinuous

densities and exponential transformations, we choose as underly-

ing space the extended real-valued lower or upper semicontinous

functions, but neither is a linear space. Consequently, the mathe-

matically inbred tendency to obtain a finite-dimensional approxi-

mation by relying on a well-chosen finite basis is problematic; see

for example Delecroix and Thomas-Agnan (2000); Meyer (2012a) for

such an approach based on splines. Third, despite progress towards

handling shape restrictions on sieves (see for example Dechevsky

and Penev (1997); DeVore (1977a), 1977b); Papp (2011); Papp and

Alizadeh (2014)), there is no straightforward way of handling a com-

prehensive set of soft information.

In this paper, as in Dong and Wets (2007), we consider an arbi-

trarily constrained maximum likelihood estimator for densities. We

appear to be the first to consider such general constraints (soft in-

formation) in the context of nonparametric density estimation. The

soft information might even be random, i.e., the soft information may

not be known a priori but is realized with the sample. We give con-

crete formulations of the constrained maximum likelihood problem

in the case of soft information about support bounds, semicontinu-

ity, continuity, smoothness, slope information and related quantities,

monotonicity, log-concavity, unimodality, location of modes, sym-

metry, bounds on density values, neighborhood of known density,

bounds on moments, and bounds on cumulative distribution func-

tions. We allow for any combination of these, and essentially any other

constraint too.

We overcome the technical difficulty caused by constraints

through the theory of constrained optimization, specifically epi-

convergence, and therefore avoid tuning parameters related to penal-

ties and regularization. With the exception of the preliminary

work Dong and Wets (2007), this paper is the first to utilize epi-

convergence to analyze constrained density estimators. We overcome

the difficulty of infinite dimensionality through the use of a new

class of splines, epi-splines Royset and Wets (2014), which are highly

flexible, allow for discontinuities, and enable convenient exponential

transformations. Here, for the first time, the theoretical foundations

for using epi-splines in density estimation are laid out. In contrast

to sieves, epi-splines can be constructed independently of the sam-

ple and therefore handles small sample sizes naturally. The precur-

sor Dong and Wets (2007) relies on a finite approximation of L2 by

Fourier coefficients. In this paper, we consider the spaces of extended

real-valued semicontinuous functions, exponential transformations,

and epi-spline approximations.

The reliance on epi-convergence and epi-splines allow us to view

the constrained maximum likelihood problem as an approximation of

a limiting optimization problem involving the actual probability den-

sity, correct soft information, and the full space of semicontinuous

functions; we refer Pflug and Wets (2013) for a related study in the

context of regression utilizing graphical convergence. Consequently,

we not only approximate a certain function space or deal with finite
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