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a b s t r a c t

This paper shows how the maximum covering and patrol routing problem (MCPRP) can be modeled as a min-

imum cost network flow problem (MCNFP). Based on the MCNFP model, all available benchmark instances

of the MCPRP can be solved to optimality in less than 0.4s per instance. It is furthermore shown that several

practical additions to the MCPRP, such as different start and end locations of patrol cars and overlapping shift

durations can be modeled by a multi-commodity minimum cost network flow model and solved to optimality

in acceptable computational times given the sizes of practical instances.
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1. Introduction

The maximum covering and patrol routing problem (MCPRP) was

introduced by Keskin, Li, Steil, and Spiller (2012) and is used to assist

traffic enforcement. A typical method for state troopers is to patrol

“hot spots” which are certain locations on highways where particu-

lar types of crashes (e.g. crashes caused by speed or driving under

influence) frequently occur (Anderson, 2007; Steil & Parrish, 2009).

Furthermore, these hot spots are only active during certain time win-

dows. Due to limited resources, not all active hot spots can be pa-

trolled. Therefore, an optimization problem to route patrol cars in

a way that maximizes hot spot coverage appears to be appropriate.

Keskin et al. (2012) model the MCPRP as a variant of the orienteer-

ing problem Tsiligirides (1984); Vansteenwegen, Souffriau, and Van

Oudheusden (2011), prove that their model is NP-hard, and present

two heuristics, a local search heuristic and a tabu search heuristic

which determine good quality solutions in short periods of time. The

authors claim that a heuristic solution instead of an exact technique

is preferred for their model since it is important for the practitioner

to obtain a good solution quickly.

Having an efficient and effective solution method to solve the

MCPRP is useful since the problem often appears as a sub prob-

lem in larger problems. Li and Keskin (2013) consider a bi-objective

multi-period patrol routing problem. The multi-period aspect ap-

pears through the introduction of intermediate temporary stations in

the patrol routes. Li and Keskin develop a heuristic that exploits the
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hierarchical structure of the problem by decomposing the problem

in a location and a routing problem. An effective solution method for

the MCPRP can be incorporated in such a framework to solve the rout-

ing problem more efficiently. If an orienteering problem approach is

taken, this is similar to the orienteering problem with hotel selection

(OPHS) of Divsalar, Vansteenwegen, and Cattrysse (2013); Divsalar,

Vansteenwegen, Sörensen, and Cattrysse (2014) which considers a

multi-period tourist trip planner application. Very recently, Çapar,

Keskin, and Rubin (2015) reconsidered the MIP formulation for the

MCPRP and also used a set of domination rules to greatly simplify the

MIP formulation. The new MIP formulation is able to solve their set

of benchmark instances to optimality within reasonable calculation

times. It also allows several extensions to be tested, such as, letting

troopers start from their homes, allowing delayed starts and intra-

day diversion.

Other patrol routing problems that require rerouting when inci-

dents in the network occur during the execution of a patrol routing

scheme are considered by Moonen, Cattrysse, Oudheusden, (2008),

Takamiya and Watanabe (2011), Chen (2012), and Portugal and Rocha

(2013). These problems can possibly also benefit from a fast solution

method for rerouting patrol cars.

Modeling the MCPRP as a minimum cost network flow problem

(MCNFP) (Winston, 1987), which is known to be solvable in polyno-

mial time (Orlin, 1997) would be a major improvement over existing

models in the literature. This is an example of exploiting the network

structure of a problem to gain computational efficiency and it under-

scores the importance of selecting an appropriate model for a partic-

ular problem. In this particular case, the network structure is uncov-

ered in the following sections step by step. For problems where the

network structure is not obvious, a systematic approach such as the
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Fig. 1. The maximum covering and patrol routing problem with two cars.

netform concept described by Glover, Klingman, and Phillips (1990)

can be used to explicit this structure.

Several other patrol routing applications, each with their own spe-

cific constraints can be found in the literature. Some of the more re-

cent ones are Lou, Yin, and Lawphongpanich (2011), Willemse and

Joubert (2011), and Chircop, Surendonk, van den Briel, and Walsh

(2013). These applications differ substantially from the basic MCPRP

as described in Keskin et al. (2012) which prohibits a straightforward

application of the proposed MCNFP reformulation. Because of the bi-

nary nature of the “hot spot profits”, these applications share more

characteristics with the orienteering problem or the rural postman

problem (Eiselt, Gendreau, Laporte, & Laport, 1995) than with the

MCNFP.

The remainder of this paper is structured as follows. In

Section 2, we show how the original MCPRP problem can be mod-

eled as an MCNFP. In Section 3, we discuss the results of the compu-

tational experiments applied on the instances of Keskin et al. (2012).

In Section 4, we show how practical extensions to the MCPRP can be

modeled by adding a multi-commodity aspect to the MCNFP (Tomlin,

1966) and discuss the results of some computational experiments on

artificial data sets in Section 5. Finally, in Section 6, we provide our

conclusions and recommendations for future research.

2. Problem analysis

Given a set of patrol cars and a set of hot spots, the objective of

the MCPRP consists of finding a set of routes for the patrol cars that

maximizes the time spent in hot spot locations. The travel times be-

tween hot spots are constant and known beforehand. Each hot spot

is only active during certain time windows. All cars have the same

shift start and end times and the same start and end locations. In ad-

dition, multiple cars being present in the same hot spot at the same

time does not increase the objective function (Keskin et al., 2012). A

car can enter and leave a hot spot at any given time but only collects

“gain” for the duration that a car remains in the hot spot within the

hot spot’s time window. Fig. 1 represents a possible routing of two

patrol cars in a graphical way. Both patrol cars are allowed to leave

the depot at time 0 and need to return at the end of their shift to the

depot. The horizontal dotted lines represent the fact that a car can

arrive at a hot spot before the hot spot’s time window is open. This

time does not provide any gain and is called dead time. The angled

dotted lines represent the actual movement of the cars between hot

spots. In the basic MCPRP, when making abstraction of the underlying

road network, the travel times between hot spots are assumed to be

constant and subject to the triangle inequality. Additionally, the gain

per minute can be different for each hot spot but is assumed to be

constant for the full duration of the hot spot’s time window.

2.1. Domination rule

The transformation of the MCPRP into a minimum cost network

flow problem relies on the fact that a lot of solutions of the MCPRP

are dominated. In an optimal solution, a patrol car will always stay at

its current hot spot until the end of its time window unless another

hot spot becomes available earlier and a larger gain can be obtained

in the latter hot spot, taking the travel time between hot spots into

account.

Thus, patrol cars will enter a hot spot i either at the opening of its

time window (to, i) or at the closing time of another hot spot j’s time

window plus the travel time between both hot spots, denoted as ta, ji.

Similarly, a hot spot i will only be exited at the closing of its time win-

dow (tc, i) or at the opening of another hot spot j’s time window minus

the travel time between both hot spots, denoted as tb, ij. This results

in splitting each hot spot’s time window i into segments, referred to

as time sections. The start and end points of the time sections of a hot

spot i are defined by to, i, the tb, ij’s, the ta, ji’s and tc, i. From this point

on, for the sake of brevity, we will refer to a time section as a section.

To further clarify the process of identifying sections required to

optimize the problem, consider the example shown in Fig. 2(a). The

network consists of three hot spots with overlapping time windows.

In order to identify the sections, a forward and a backward pass over

all hot spots is executed. Fig. 2(b) shows the forward pass. From ev-

ery hot spot’s end time (including the source), the arrival time at any

other hot spot (including the sink) is determined, or in other words,

all ta, ji’s are determined. This process is depicted by the dotted lines.

The gray lines mean that the end time of the previous hot spot’s time

window plus the travel time is smaller than the start time of the next

hot spot’s time window. Likewise, the red dotted lines mean that the

possible arrival time in the next hot spot falls outside the hot spot’s

time window. As a consequence, these ”dotted” relationships will not

create additional sections. However, the green dotted lines emanat-

ing from hot spot 2 will cause splits in the time windows of hot spots

1 and 3. Fig. 2(c) shows the backward pass which determines all tb, ij’s.

Ultimately, Fig. 2(d) shows all identified sections.

To reiterate, we define a section as a time segment of the hot spot’s

time window. It is characterized by the fact that, in an optimal solu-

tion, a car can only enter a section at the start of the section’s time

window and only leave it at the end of the section’s time window.

We formulate this domination rule as the following lemma:

Lemma 1. Any routing where a car moves from a section S before the

end time of the section to another section T will be dominated by either

the solution where the car leaves at the end time of section S or the so-

lution where the car did not enter section S and immediately entered

section T.

A proof of this lemma can be found in Appendix A

Without loss of generality, the patrol routing problem is then re-

defined as: “Find a set of routes for the patrol cars that maximizes the

time spent (or gain) at the sections under the additional constraint

that a section can only be visited by at most one car. It should be

noted, however, that it is still physically possible for two patrol cars

to be present at the same hot spot location at the same time. How-

ever, this implies that one of the cars is waiting to move to another

hot spot or arrived too early at the current hot spot. This physical situ-

ation will be modeled by one car actually visiting the section, collect-

ing the gain, and one car using a travel arc that physically passes by

this section while moving from or to another hot spot, not collecting

the gain and thus not visiting the section.

We will now first define the general Minimum Cost Network Flow

Problem (MCNFP) and then we will explain how these “sections” can

be used to model the Maximum Covering Patrol Routing Problem

(MCPRP) as an MCNFP.

2.2. Minimum cost network flow problem

The Minimum Cost Network Flow Problem consists of finding the

cheapest possible way of sending a given amount of flow through a

network, where a cost and capacity is associated with each arc in the

network. It can be modeled by the following linear program, where
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