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a b s t r a c t

Theory of constraints has been commonly used in production systems to improve productivity. Since the

improvement on an upstream workstation may have impact on its downstream servers, finding the true

bottleneck is not trivial in a stochastic production line. Due to the analytical intractability of general tandem

queues, we develop methods to quantify the dependence among stations through simulation. Dependence

is defined by the contribution queue time at each station, and contribution factors are developed based on

the insight from Friedman’s reduction method and Jackson networks. In a tandem queue, the dependence

among stations can be either diffusion or blocking, and their impact depends on the positions relative to the

bottlenecks. Based on these results, we show that improving the performance of the system bottleneck may

not be the most effective place to reduce system cycle time. Rather than making independence assumptions,

the proposed method points out a promising direction and sheds light on the insights of the dependence in

practical systems.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

To make an organization more profitable, production systems are

often required by the management to have higher throughput rate

under limited resource especially during peak seasons. To achieve

this goal, Goldratt and Cox (1992) proposed the Theory of Constraints

(TOC) based on the concept of bottlenecks, where a bottleneck is de-

fined as the workstation whose required throughput rate is higher

than its capacity. Through TOC, they explained how to achieve higher

system throughput rate by relieving the bottleneck as well as how to

reduce inventory by synchronizing production lines with the bottle-

neck. Rahman (1998) gave a comprehensive review on the Theory of

Constraints.

Stochastic effects are inherent in production systems: a ma-

chine faces different types of preventive maintenances, prod-

uct changeovers or breakdowns. They can be either time-based,

or run-based and preemptive or non-preemptive (Wu, 2014a; Wu,

McGinnis, & Zwart, 2011). A flexible machine can process differ-

ent products with different service times under complicated dis-

patching policies. Jobs may encounter process and transfer batches

(Wu, 2014b), and the transportation time may not be a constant
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between workstations. While service time variability can be small

(Bitran & Tirupati, 1988; Inman, 1999), production environment is

stochastic by nature.

In a stochastic system, the price of higher throughput rate is

longer queue time. When the throughput rate approaches capacity,

the queue time goes to infinity. Since no customer would accept in-

finite cycle time, a bottleneck defined by throughput rate cannot oc-

cur in a stochastic production line. On the other hand, the bottleneck

in manufacturing is typically defined as the workstation with the

highest level of utilization (see e.g. Lozinski and Classey, 1988; Hopp

and Spearman, 1995). However, due to the dependence among work-

stations, the station with the highest utilization may not have the

most impact on system cycle time. To overcome the shortcomings,

Wu (2005) extended the definition of bottlenecks from throughput

bottlenecks (TPBN) to cycle time bottlenecks (CTBN), where a cy-

cle time bottleneck is the workstation which prevents a production

system from achieving its mean cycle time target. Since system cy-

cle time is contributed by all workstations, all workstations are cy-

cle time bottlenecks with different levels of contribution. With the

same mean cycle time target, reducing the mean queue time of any

workstation would allow queue time increases of the others, and po-

tentially lead to a higher throughput rate of the system under the

same system capacity. By defining bottlenecks from the view point

of cycle time, the concept of TOC has been extended from a deter-

ministic system to a stochastic one. Although all workstations can be
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cycle time bottlenecks, there are still major and minor ones, where a

major one has a higher impact on system mean cycle time. The ques-

tion becomes which workstation is the major cycle time bottleneck

and we should improve first?

For a workstation with independent and identically distributed

(iid) interarrival time and service time, its mean queue time can

be approximated by Kingman’s G/G/1 heavy traffic approximation

(Kingman, 1965):

QT (G/G/1) ∼=
(

c2
a + c2

s

2

)(
ρ

1 − ρ

)
1

μ
, (1)

where ρ is utilization (=λ/μ), λ is arrival rate, μ is service rate, c2
a is

the squared coefficient of variation (SCV) of arrival intervals, c2
s is the

SCV of service time, and QT is mean queue time. Cycle time is the sum

of queue time and service time. In a queueing network, if all stations

work independently, Kingman’s approximation would give good eval-

uation of system performance. However, in practice, congestion at

a workstation often implies later congestion at its downstream sta-

tions. Machine states are dependent and the internal arrival process

is not renewal in general (Whitt, 1995). In this situation, the perfor-

mance of a workstation will have impact on its downstream worksta-

tions. Simply improving the workstation with the highest utilization

may not be the optimal choice. In terms of cycle time reduction, we

call a workstation the first moment CTBN, if it is the most effective

workstation to improve system cycle time when its service time is

reduced, and we call a workstation the second moment CTBN if it is

the most effective workstation to improve system cycle time when its

variability (or variations) is reduced.

Dependence in queueing systems has been widely studied since

1960s. Dependence among service times in tandem queues has

been studied by Mitchell, Paulson, and Beswick (1977), Pinedo

and Wolff (1982), Sandmann (2012), Weber and Weiss (1994)

and Wolff (1982). Dependence between interarrivals and service

time in queueing systems has been studied by Adan and Kulka-

rni (2003), Bhat (1969), Borst and Boxma (1993) and Boxma

and Perry (2001). Prior literatures mainly focused on the depen-

dence among successive service times, dependence between in-

terarrival times and service times, as well as dependence among

successive interarrival times (Fendick, Saksena, & Whitt, 1989).

Only few of them studied the dependence among queue times.

Reich (1963) proved that in single-server tandem queues with expo-

nential service time and Poisson arrival process, the cycle times spent

by a customer in successive stations are independent in steady state.

On the other hand, Burke (1964) considered two single-server queue-

ing systems in tandem with exponential service time and Poisson ar-

rival process and proved that the queue times of a job between con-

secutive stations are mutually dependent in steady state. However,

the above studies on queue time dependence are all derived under

Markovian settings.

Although the existence of dependence among stations is

well recognized, due to the non-renewal departure processes

(Bitran & Dasu, 1992), the exact analysis of dependence in general

queueing systems is analytically intractable. The current approaches

to evaluate the performance of queueing networks are mainly based

on independence assumptions directly (e.g. the stochastic indepen-

dence assumption (Kleinrock, 1976)) or indirectly (e.g. the functional

central limit theorem (Harrison & Nguyen, 1990)). Due to the in-

dependence assumptions, product-form and Brownian networks are

not capable to fully capture the dependence among stations.

To have better understanding of practical queueing systems, we

study the dependence of mean queue times among stations in gen-

eral tandem queues through simulation. Dependence is defined by

the contribution of a station in a tandem queue, and the contribution

of a station is defined based on the insight from Friedman’s reduction

method (Friedman, 1965) and Jackson networks (Jackson, 1957). Two

types of dependences are identified: blocking and diffusion effects.

Fig. 1. Tandem queues with N single server stations.

Their impact on system queue time depends on their positions rela-

tive to the bottlenecks. We start our investigation from a simple prob-

lem with the following assumptions: workstations are arranged in se-

ries without reentry, each workstation is a single server with infinite

buffers, dispatching policy is first-come-first-server (FCFS), and the

service times of each workstation and the external interarrival times

are mutually independent and generally distributed.

This paper is organized as follows. Section 2 reviews the prop-

erty of intrinsic ratios and defines the contribution queue times.

Section 3 explains the dependence among single server queues in se-

ries. Section 4 introduces the second moment results on the theory

of constraints, and conclusion is given in Section 5.

2. Intrinsic ratio and contribution queue time

In this study we investigate the dependence of the mean queue

times of a general tandem queue with N single server stations as

shown in Fig. 1. The external interarrival times and service times are

mutually independent and generally distributed. Jobs arrive at the

first station independently with arrival rate λ and squared coefficient

of variation (SCV) c2
a . There are infinite buffers at each station and the

service discipline is first-come first-served (FCFS). Denote the service

time at station i by Si, and SCV of Si by c2
Si

, i = 1, . . . , N. Let service rate

at station i be μi and ρi = λ/μi < 1. The mean queue time at station

i is QTi, i = 1, . . . , N.

Wu and McGinnis (2013) studied tandem queues in Fig. 1 and in-

troduced the concept of intrinsic ratio. They also proposed an approx-

imate model for the system queue time of a general queueing net-

work through intrinsic ratios (Wu & McGinnis, 2012). Here we give a

brief review of the intrinsic ratio and system queue time approxima-

tion. It constitutes the fundamentals of the analysis in Section 3.

To compute the intrinsic ratio, bottlenecks of a tandem queue have

to be determined first as follows.

Procedure 1. Identification of bottlenecks

1. Identify the index of the main system bottleneck server (BN1),

where μBN1
= min μi, for i = 1 to N. Let k = 1.

- If more than one server has the minimum service rate, BN1 =
min i, where μi = μBN1

.

2. Identify the index of the next bottleneck server (BNk+1) in front

of the previous one (BNk), where μBNk+1
= min μi, for i = 1 to

BNk – 1.

- If more than one server has the minimum service rate,

BNk+1 = min i, where μi = μBNk+1
.

3. If BNk+1 = 1 or 2, then go to step 4. Otherwise, let k = k + 1 and

go to step 2.

4. If BNk+1 = 2, then BNk+2 = 1 and stop. If BNk+1 = 1, then stop.

Procedure 1 identifies the main system bottleneck first, and then

identifies the next bottleneck within a subsystem, where a subsystem

is composed of the servers from the first server to the newest identi-

fied bottleneck (not included). At first when no bottleneck has been

identified, the subsystem is the entire system and BN1 is the system

bottleneck. The subsystem then gradually becomes smaller until the

subsystem is solely composed of the first station of the tandem queue.

To compute intrinsic ratios, Wu and McGinnis (2013) introduced

ASIA and fully coupled systems. In an ASIA system, all servers see

the initial arrivals (ASIA) directly. Therefore, if the tandem queue in

Fig. 1 is an ASIA system, the station i of the tandem queue is a G/G/1

queue with the initial arrival process and service time Si (1 ≤ i ≤ N)

as shown in Fig. 2.
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