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a b s t r a c t

Project scheduling problems with both resource constraints and uncertain task durations have applications

in a variety of industries. While the existing research literature has been focusing on finding an a priori

open-loop task sequence that minimizes the expected makespan, finding a dynamic and adaptive closed-

loop policy has been regarded as being computationally intractable. In this research, we develop effective and

efficient approximate dynamic programming (ADP) algorithms based on the rollout policy for this category

of stochastic scheduling problems. To enhance performance of the rollout algorithm, we employ constraint

programming (CP) to improve the performance of base policy offered by a priority-rule heuristic. We further

devise a hybrid ADP framework that integrates both the look-back and look-ahead approximation architec-

tures, to simultaneously achieve both the quality of a rollout (look-ahead) policy to sequentially improve

a task sequence, and the efficiency of a lookup table (look-back) approach. Computational results on the

benchmark instances show that our hybrid ADP algorithm is able to obtain competitive solutions with the

state-of-the-art algorithms in reasonable computational time. It performs particularly well for instances with

non-symmetric probability distribution of task durations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Given a set of tasks and resources, a typical resource-constrained

project scheduling problem (RCPSP) involves finding a time- and

resource-feasible schedule of tasks, such that the project completion

time (makespan) is minimized. It includes various shop scheduling

problems such as job shop, flow shop, and open shop as special cases

(Brucker, 2002), and has a wide range of applications in construc-

tion, manufacturing, R&D, personnel scheduling and military oper-

ations. The deterministic RCPSP is well-known to be NP-complete

(Bartusch, Mohring, & Randermacher, 1988). Its solution methods

have been extensively studied in the operations research literature.

See Demeulemeester and Herroelen (2002), Kolisch and Hartmann

(2006) and Debels and Vanhoucke (2007) for the state-of-the-art al-

gorithms to solve deterministic RCPSPs.

In the real-world scheduling environment, the exact task dura-

tion is often unknown at the point when the scheduling decision is

made, giving rise to the stochastic RCPSP (SRCPSP; Demeulemeester &

Herroelen, 2002). For instance, construction projects can often be de-

layed by unexpected weather and/or disruption of logistics; accurate

task processing time in the engineering-to-order (ETO) or made-to-
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order (MTO) settings can be difficult to obtain due to the uniqueness of

order and learning; task durations in an R&D project are often uncer-

tain due to the unforeseeable outcome of a predecessor task; planning

for a military mission or campaign is often subject to uncertain task

durations.

The classical approach to deal with uncertainty of task duration

in project management is the well-known PERT analysis (Malcolm,

Roseboom, Clark, & Fazar, 1959). PERT estimates the expected project

makespan and its variation assuming given probability distribution of

task durations, such as the commonly used beta-distribution. A lim-

itation of the PERT method and its variants (cf. Dodin, 2006; Slyke &

Richard, 1963) is the lack of decision-support. That is, these methods

focus on understanding the statistical properties of project makespan,

but they do not provide optimal start times, nor identify which path(s)

will likely be critical, or the longest path. Other researchers have at-

tempted to overcome this limitation of the PERT methodology (cf.

Dodin, 1984; Elmaghraby, Ferreira, & Tavares, 2000). However, this

line of research does not explicitly consider resource constraints:

it is assumed that unlimited resources are available for project

execution.

A successful approach to address exogenous disruptions on project

task duration and resource availability, known as robust project

scheduling, aims to construct a robust or stable project schedule in a

resource-constrained environment. One may proactively construct a

robust schedule to minimize the expected deviation from the baseline
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schedule, which is often achieved by properly inserting time buffers

in the schedule (cf. Goldratt, 1997; Herroelen & Leus, 2004); or re-

actively revise/re-optimize the schedule during project execution to

obtain a feasible schedule with respect to the newly available in-

formation, that minimizes the deviation from the original baseline

schedule (Van de Vonder, Ballestin, Demeulemeester, & Herroelen,

2007). Several researchers developed combined proactive–reactive

procedures (cf. Demeulemeester, Herroelen, & Leus, 2008; Van de

Vonder, Demeulemeester, Herroelen, & Leus, 2006). Recent work by

Deblaere, Demeulemeester and Herroelen (2011) developed a dy-

namic proactive project execution policy to minimize the weighted

activity starting time deviations plus the penalty or bonus for late or

early project completion. Bruni, Beraldi, Guerrero, and Pinto (2011)

proposed a decomposition-based heuristic method with the use of

joint probabilistic constraints to obtain a feasible baseline schedule

with the ability to hedge against variations of activity duration.

The SRCPSP studied in this paper minimizes the expected

project makespan while considering both limited resource availabil-

ity and uncertain task duration. The goal is to obtain a time- and

resource-feasible task sequence that gives minimum expected project

makespan. A deterministic schedule, in the form of task start times,

is unable to provide an implementable solution to SRCPSP, as it can

easily become time- or resource-infeasible due to random task dura-

tions. An implementable solution to the addressed problem requires a

policy-type decision specifying which task(s) to start at each decision

point (cf. Igelmund & Radermacher, 1983a; Mohring & Stork, 2000).

The fundamental difference between SRCPSP and the robust

scheduling problems is the underlying scheduling setting and en-

vironment. In robust scheduling, the decision-maker must obtain

a baseline schedule for the entire project upfront, but he/she does

not have complete flexibility of revising it during project execution.

Therefore, any deviation from the baseline schedule will be penalized,

and its goal is to minimize total expected deviation penalty through:

either obtaining a proactive baseline schedule to start with, and/or

re-optimizing the schedule during execution in a reactive way. In the

SRCPSP, we assume that project scheduling decisions are executed

sequentially without the need of an a priori baseline schedule. The

SRCPSP also differs from the other stream of research on resource

allocation for projects, which focuses on optimizing the time-cost

tradeoffs under uncertainty (cf. Gutjahr, Strauss & Wagner, 2000;

Keller & Bayraksan, 2010; Shen, Smith & Ahmad, 2010).

The simplest and most popular policy-type solutions are vari-

ous priority-based policies, in which all tasks are ranked accord-

ing to a predefined priority rule, and started in the order specified

by the priority. Although easy to implement and fast to execute,

they suffer the so-called Graham’s anomalies (Graham, 1966), and

there are instances for which no priority-based policy generates an

optimal schedule (Demeulemeester & Herroelen, 2002). Stochastic

branch-and-bound procedures have been proposed by Igelmund and

Radermacher (1983b) and Stork (2001). Recent research efforts have

been focusing on the integrated simulation-optimization (Sim-Opt)

algorithms, in which either a greedy heuristic (Golenko-Ginzburg &

Gonik, 1997) or some metaheuristic (Glover & Kochenberger, 2005) is

used to search the global solution space; while simulation is employed

to evaluate a candidate or neighbor solution. Various metaheuristics

have been implemented in such frameworks including a genetic algo-

rithm (GA) by Ballestin (2007), tabu search (TS) by Tsai and Gemmill

(1998), and greedy randomized adaptive search procedure (GRASP)

by Ballestin and Leus (2009). Notably, Ashtiani, Leus, and Aryanezhad

(2011) developed a new pre-processing procedure with a two-phase

GA to obtain currently best results for SRCPSP in the literature. These

approaches attempt to find a sequence of all tasks at time zero, with-

out observing durations of early tasks. Using the terminology of the

optimal control theory, they correspond to an open-loop policy. Such

solutions are static in nature, and are not updated during real-time

execution.

An alternative solution approach to SRCPSP is the closed-loop pol-

icy, in which scheduling decisions are made in a sequential fashion

through the methodology of dynamic programming (DP; Bertsekas,

2007). Instead of optimizing the entire task sequence prior to project

execution, a closed-loop policy seeks to find an optimal decision rule

(policy) for selecting the task(s) to start at each decision-point, given

the information a decision-maker knows about the current system.

It is dynamic and adaptive in nature, which makes it possible to take

advantage of information that becomes available between decision-

points. Thus, in principle, a closed-loop policy is more flexible than an

open-loop policy. We refer to Dreyfus and Law (1977) and Bertsekas

(2007) for a systematic treatment of DP and closed-loop policies.

Although theoretically attractive, optimal closed-loop policies for

SRCPSP have generally been perceived as being computationally in-

tractable. There are only a handful of papers that attempt to of-

fer closed-loop policies. Fernandez (1995) describes SRCPSP as a

multi-stage sequential decision problem and proposes a decision-

tree approach, which is computationally intractable for even a small

number of tasks and scenarios. Fernandez and Armacost (1996) and

Fernandez, Armacost, and Pet-Edwards (1998) discuss the advantage

of modeling SRCPSP as a sequential decision problem and clarifies the

importance of an implementability or non-anticipativity constraint in

the formulation, without providing any computational results. Choi,

Realff, and Lee (2004) consider a simplified job-shop version of SR-

CPSP with fixed sequence of tasks in each project, and present a DP

algorithm with a heuristically confined state space. They show com-

putational results for an example of project with 17 tasks.

The objective of this paper is to develop computationally tractable

near-optimal closed-loop algorithms for solving reasonably large SR-

CPSPs. To tackle the curse-of-dimensionality, we have devised sev-

eral schemes to approximately solve the Bellman equation (Bellman,

1957) in the Markov decision process model (MDP; Puterman, 2005)

for SRCPSP. Our approximate dynamic programming (ADP) algorithm

is built upon three core techniques. First, a sub-problem is constructed

in each decision stage through an approximation of the exact recur-

sive cost-to-go function in DP. Second, a forward iteration procedure

is employed through sample paths generated by Monte Carlo (MC)

simulation, which avoids the need of enumerating all possible states

via the transition function in classical DP. Third, some deterministic

scheduling methods are employed to handle the sub-problem in each

ADP iteration.

Given the combinatorial nature of SRCPSP, we embed some

scheduling heuristics in a rollout framework (Bertsekas, Tsitsiklis, &

Wu, 1997) to sequentially improve a closed-loop solution. Such a roll-

out policy can be viewed as a look-ahead strategy that evaluates the

expected cost of a state-action pair using the MC sample paths for all

future stages. Our design of the rollout algorithm enhances its basic

version in two ways. Only a small subset of random scenarios (fea-

tures) are generated, using the idea of limited simulation proposed

by Bertsekas and Castanon (1999), to reduce the burden of a pure

MC simulation. In addition, since the quality of a closed-loop solu-

tion depends heavily upon the ability to solve the sub-problem in

each iteration, we replace the simple priority-rule based heuristic by

the more effective constraint programming (CP; Baptiste, Le Pape, &

Nuijten, 2001) techniques to handle the scheduling sub-problem.

We then design a new approximation architecture integrating

techniques in the artificial intelligence (AI) area to approximate the

cost-go-go function. Rather than directly working on the optimiza-

tion problem associated with the recursive cost-to-go function, the

AI community has developed a suite of reinforcement learning (RL;

Sutton & Barto, 1998) techniques to learn the value of a state-decision

pair through sequential decision-environment interactions. Take the

well-known lookup table approach for example: there, a record for the

expected value of each state-decision pair is maintained and updated

using MC simulation. In contrast to the rollout look-ahead policy,

the lookup table approach can be viewed as look-back strategy that

Please cite this article as: H. Li, N.K. Womer, Solving stochastic resource-constrained project scheduling problems by closed-loop approximate

dynamic programming, European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.04.015

http://dx.doi.org/10.1016/j.ejor.2015.04.015


Download English Version:

https://daneshyari.com/en/article/6896503

Download Persian Version:

https://daneshyari.com/article/6896503

Daneshyari.com

https://daneshyari.com/en/article/6896503
https://daneshyari.com/article/6896503
https://daneshyari.com

