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a b s t r a c t

Principal Component Analysis (PCA) is the most common nonparametric method for estimating the volatility

structure of Gaussian interest rate models. One major difficulty in the estimation of these models is the fact

that forward rate curves are not directly observable from the market so that non-trivial observational errors

arise in any statistical analysis. In this work, we point out that the classical PCA analysis is not suitable for

estimating factors of forward rate curves due to the presence of measurement errors induced by market

microstructure effects and numerical interpolation. Our analysis indicates that the PCA based on the long-run

covariance matrix is capable to extract the true covariance structure of the forward rate curves in the presence

of observational errors. Moreover, it provides a significant reduction in the pricing errors due to noisy data

typically found in forward rate curves.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.

1. Introduction

The term-structure of interest rates is a high-dimensional object

which has been the subject of much research in the finance literature.

It is the natural starting point for pricing fixed-income securities and

other financial assets. In particular, the identification of factors capa-

ble to explain its movements plays a crucial role in modeling complex

interest rate derivative products. Since the seminal works of Steeley

(1990), Stambaugh (1988) and Litterman and Scheinkman (1991), it

is well-known that most of the covariance yield curve structure can

be summarized by just a few unobservable factors. This stylized fact

is fundamentally based on the Principal Component Analysis (hence-

forth abbreviated by PCA) based on sample covariance matrices. In

this case, a small number of eigenvectors summarize the whole sec-

ond moment structure of the yield curves.

The interest rate markets can be summarized by two fundamental

high dimensional objects: the yield x �→ yt(x) and forward rate curves

x �→ rt(x); t � 0 which are connected by the following linear relation:

yt(x) = 1

x

∫ x

0

rt(z)dz; 0 ≤ t < ∞, x ≥ 0. (1.1)

See e.g. Filipovic (2009) for more details. In particular, the underlying

covariance structure of yield and forward rate curves play a major

role in the statistical analysis of the term-structure of interest rates.

See e.g Rebonato (2002), Schmidt (2011) and other references therein.
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For instance, forward rate curves play a central role in pricing and

hedging interest rate derivatives by means of the classical methodol-

ogy proposed by Heath, Jarrow, and Morton (1992). Their contribution

can be summarized by the representation of the forward rate curve

dynamics in terms of a stochastic partial differential equation

drt(x) =
(

∂rt(x)

∂x
+ αHJM(t, rt(x))

)
dt

+
d∑

j=1

σ j(t, rt(x))dB
j
t; 0 ≤ t < ∞, x ≥ 0, (1.2)

where r0(x) = ξ (x); x � 0 is a given initial forward rate curve, αHJM

is the so-called (HJM) drift condition which is fully determined

by the volatility structure σ = (σ 1, . . . , σ d) and (B1, . . . , Bd) is a

d-dimensional Brownian motion. Indeed, the initial forward rate

curve ξ and the volatility structure σ fully determine the no-arbitrage

dynamics of the model (1.2). In the remainder of this paper, the

family of models of the form (1.2) parameterized by volatilities σ
will be called HJM models. See e.g Filipovic (2009) for further details.

For a given initial forward rate curve, the fundamental object

which encodes the whole dynamics of (1.2) is volatility. In particular,

due to closed form expressions for derivative prices and hedging, it

is common (see e.g. (Falini, 2010; Jarrow, 2002; Rutkowski, 1996))

to assume that the volatility structure is deterministic. In this case,

the stochastic dynamics of forward rates is given by a Gaussian HJM

model:

drt(x)=
(
∂rt(x)

∂x
+ αHJM(x)

)
dt +

d∑
j=1

σj(x)dB
j
t; 0 ≤ t < ∞, x ≥ 0.

(1.3)
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The most common alternative to estimate the underlying volatil-

ity structure is to use PCA methodology (see e.g. Filipovic, 2009;

Jarrow, 2002; Schmidt, 2011 and other references therein) based on

the static covariance matrix of a given sample (rt(x1), . . . , rt(xM)). The

PCA methodology provides the following estimator for the volatility

structure:

σ̂ i = ϕ̂i

√
λ̂i; i = 1, . . . , m̂, (1.4)

where m̂ is the estimated number of principal components of the for-

ward rate curves and the estimated eigenvalues and eigenvectors of

the associated static covariance matrix are given by λ̂i and ϕ̂i, respec-

tively. See also Bermin (2014) for a recent theoretical link between

PCA based on conditional covariance matrices and the Brownian di-

mension d which drives forward rates curve processes (1.2).

There are many drawbacks when estimating parameters and

structures related to forward rate curves: (a) The intrinsic infinite-

dimensionality of forward rate markets (see e.g Carmona and

Tehranchi, 2006), (b) daily calibration may lead to inconsistent con-

clusions due to a possible non-existence of finite-dimensional realiza-

tions produced by (1.2) (see e.g Filipovic, 2001), and (c) the absence

of fully observed forward rate curves in interest rate markets (see

e.g. McCullogh, 1971). In this article, we discuss three fundamental

issues related to (c) and the common use of PCA methodology in

forward rate markets: Evidence of observational errors in forward

rate markets; the sensitiveness of the PCA methodology facing noisy

forward rate curves and their implications to pricing interest rate

derivatives.

The next section continues with a brief literature review about

the use of PCA methodology in interest rate data. In Section 3, we

precisely state the main questions we want to tackle in this article.

In Section 4, we report an elementary result about the equivalence

of ranks between the covariance operators of the forward rate and

yield curves. In Section 5, we describe some alternatives of estimat-

ing covariance structures in the presence of observational errors, the

so-called LRCM estimators. Section 6 presents a detailed simulation

analysis reporting the performance of the PCA based on LRCM esti-

mators. Moreover, we discuss the role played by measurement errors

in the PCA methodology applied to the term-structure of interest

rate. In order to compare the simulation results reported in Section 6

with a real data set, Section 7 provides an empirical analysis on the

number of principal components for US and UK term-structure of

interest-rates. In Section 8, we analyze the impact of neglecting ob-

servational errors in pricing interest rate derivatives in light of the

PCA methodology. Section 9 presents the final remarks.

2. Literature review

The literature on the PCA methodology in interest rate markets is

vast. This section reviews work from a stream of this literature that

has some relevance to our study.

2.1. PCA-based estimation for covariance structures in forward rate

markets

Plenty of spot interest rate data (and hence yield curve data) are

available in fixed income markets. However, due to the absence of

explicit forward rate markets, implied forward rate curves have to be

estimated from interest rates based on other financial instruments

(see e.g. McCullogh, 1971). This already presents a major difficulty in

implementing derivative pricing models based on the classical Heath-

Jarrow-Morton methodology. See e.g. Bermin (2014); Chiu, Fang,

Lavery, Lin, and Wang (2008); Filipovic (2009); Richter and Teich-

mann (2014) and other references therein for further details.

The most common non-parametric procedure for estimating the

covariance structure of forward rate curves is the PCA methodology.

Basically, three common strategies are very popular among practi-

tioners in the PCA estimation of the forward rate curves: (A) One

postulates the existence of a finite-dimensional parameterized fam-

ily of smooth curves G = {G(z; x); z ∈ Z ⊂ R
N, x ≥ 0} and a Z-valued

state process Y such that

yt(x) = G(Yt; x) for x ≥ 0, 0 ≤ t < ∞. (2.1)

By interpolating the available yield data based on G, then one ex-

tracts the associated forward rate curve by means of any numerical

scheme to recover rt(x) = yt(x)− x ∂yt(x)
∂x

. The PCA is then applied on

this estimated forward rate curves, as discussed in e.g. Jarrow (2002)

and Lord and Pelsser (2007). (B) Instead of (2.1), one shall use a non-

parametric polynomial splines method to interpolate the yield data

and userelation (1.1) to recover x �→ rt(x) at some time t � 0. See

e.g. Vasicek and Fong (1982), Barzanti and Corradi (1998), Chiu et al.

(2008) and other references therein for further details. Alternatively,

one can use proxies to construct the forward rate curve jointly with a

given interpolating family of smooth curves G. See e.g. Bhar, Chiarella,

and Tô (2002), Alexander and Lvov (2003) and Gauthier and Simonato

(2012) for further details.

One fundamental assumption behind all the classical aforemen-

tioned procedures and, more generally, on the use of PCA methodol-

ogy in data analysis is the following one:

Assumption (I) There is no observational errors in forward rate

curves.

2.2. Observational errors and principal component analysis

One can argue that assumption (I) is not too strong due to the

linear relation (1.1). Apparently, mild assumptions on the paramet-

ric form G would alleviate a possible violation of assumption (I) in

forward rate markets. However, caution is advised in this regard, be-

cause the marginal nature of the forward rate curves encoded by ∂yt(x)
∂x

may introduce a severe bias. One of the main issues in calibration of

HJM models is the fact that arbitrary choices of parametric formsG for

x �→ yt(x) may lead to inconsistency of the estimates over a trading pe-

riod (see e.g. Filipovic, 2001 and other references therein). Moreover,

proxies may cause non-negligible observational errors which might

contribute to the so-called microstructure effects (see e.g. Mizrach

& Neely, 2011 and Goyenko & Ukhov, 2011). In fact, the presence of

measurement errors may cause biased and inconsistent parameter

estimates. This may lead to erroneous conclusions to various degrees

in the financial analysis.

At this stage, a natural question is the validity of assumption (I) in

the term-structure of interest rates. In fact, we shall compare the ex-

isting literature of principal components between yield and forward

rate curves to see some evidence of violation of assumption (I). In one

hand, the linearity of the relation (1.1) strongly suggests that the “di-

mension” of the forward rate and yield curves must be identical (See

Proposition 4.1). On the other hand, distinct results in the literature

have been reported on the spectral structure of the forward rate and

yield curves. Akahori, Aoki, and Nagata (2006) and Liu (2010) report

a remarkable difference in the estimated number of factors between

forward rates and yield curves and they suggest that a possible expla-

nation for this would be the violation of the random walk hypothesis.

The same type of behavior was reported by Lekkos (2000) who ar-

gues that averaging the forward rates over time to maturities would

induce a strong dependence on the yield data. He argues that the PCA

method artificially estimates a small number of principal components

for yield curves. Alexander and Lvov (2003) study statistical proper-

ties of the UK Libor rates. They show that the strategy (A) induces

equivalent loading factor structures between yield and implied for-

ward rate curves. Lord and Pelsser (2007) report a visible difference

in the PCA of forward and yield curves by using estimated Svensson

curves for the Euro market. Similar results have been reported by
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