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a b s t r a c t

In this paper we present an exact solution method for the transportation problem with piecewise linear

costs. This problem is fundamental within supply chain management and is a straightforward extension

of the fixed-charge transportation problem. We consider two Dantzig–Wolfe reformulations and investi-

gate their relative strength with respect to the linear programming (LP) relaxation, both theoretical and

practical, through tests on a number of instances. Based on one of the proposed formulations we derive

an exact method by branching and adding generalized upper bound constraints from violated cover in-

equalities. The proposed solution method is tested on a set of randomly generated instances and com-

pares favorably to solving the model using a standard formulation solved by a state-of-the-art commercial

solver.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the problem of finding a minimum cost

flow in a bipartite graph between a set of suppliers and a set of cus-

tomers. The cost of sending goods on an arc follows a piecewise linear

structure (see Section 2) and the problem is thereby a natural gen-

eralization of the Fixed-Charge Transportation Problem. This problem

is termed the Piecewise Linear Transportation Problem (PLTP), and is a

versatile problem that is fundamental within supply chain network

design and arises in a number of applications. The general form of

the cost functions allows for modeling of different transportation

modes such as small packages, less-than-truckloads, truckloads, and

air freight (see e.g. Croxton, Gendron, & Magnanti, 2003b; Lapierre,

Ruiz, & Soriano, 2004). Additionally, the cost function can be used to

model price discounts such as all-unit or incremental discounts, often

found in procurement theory (see Davenport & Kalagnanam, 2001;

Kameshwaran & Narahari, 2009) or to linearize an otherwise nonlin-

ear cost function.

Kim and Pardalos (2000) present a heuristic for the PLTP based

on a linearization of the cost function and subsequent solution of a

(standard) transportation problem. In Croxton, Gendron, and Mag-

nanti (2003a) the authors show that the linear programming relax-
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ations of three textbook formulations of a piecewise linear function

are equivalent. One of them is the Multiple-Choice Model (MCM) used

in Section 2.1. Other studies (e.g. Keha, de Farias, & Nemhauser, 2004;

Vielma, Ahmed, & Nemhauser, 2008, 2010) have extended this result

to include a number of other formulations and they also perform tests

to find the best formulation in terms of solving the problem to opti-

mality by a standard solver. The most recent of these studies suggests

that when the number of different transportation modes is relatively

small (as in our tests), the MCM, presented in Section 2.1, is preferable.

As the linear programming relaxation of the standard models is often

very poor, we propose two stronger formulations for the problem,

both based on a Dantzig–Wolfe reformulation of the problem.

In Section 2 we give a formal definition of the problem using the

standard multiple-choice formulation and two new formulations. The

two new stronger formulations rely on a Dantzig–Wolfe reformu-

lation of the original problem and column generation is required

to solve the LP relaxation. The strength of the linear programming

relaxation of the formulations is investigated in Section 3, along with

the computational experience on a test bed of instances. Based on

these results we propose an exact solution method based on one

of the formulations, in which we add valid inequalities described in

Section 4 and by applying the branching rule described in Section 5.

In Section 6 we test the solution method on a number of randomly

generated instances and compare the method to solving the MCM by

a standard commercial solver. Section 7 summarizes our findings and

concludes this paper.

http://dx.doi.org/10.1016/j.ejor.2015.03.039

0377-2217/© 2015 Elsevier B.V. All rights reserved.

Please cite this article as: T.R.L. Christensen, M. Labbé, A branch-cut-and-price algorithm for the piecewise linear transportation problem,

European Journal of Operational Research (2015), http://dx.doi.org/10.1016/j.ejor.2015.03.039

http://dx.doi.org/10.1016/j.ejor.2015.03.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:tuec@asb.dk
mailto:tuechristensen@gmail.com
mailto:mlabbe@ulb.ac.be
http://dx.doi.org/10.1016/j.ejor.2015.03.039
http://dx.doi.org/10.1016/j.ejor.2015.03.039


2 T.R.L. Christensen, M. Labbé / European Journal of Operational Research 000 (2015) 1–11

ARTICLE IN PRESS
JID: EOR [m5G;April 13, 2015;15:9]

Fig. 1. A piecewise linear cost function.

2. Mathematical formulations

In this section we first define the PLTP and introduce notation.

Then we introduce a standard formulation and two new formulations

of the PLTP.

Let the set of supply nodes (suppliers) be denoted by the set I =
{1, . . . , n}. The total capacity of each supplier i is denoted by Si. The

demand nodes (customers) are denoted by the set J = {1, . . . , m},

where customer j has demand dj. The cost of transporting goods from

supplier i � I to customer j � J follows a piecewise linear cost structure

with κ ij line segments on the arc between supplier i and customer j,

which is also known as the modes. For notational convenience we

will assume that κ ij = κ for all (i, j) and we denote the set of modes

by Q. Each mode q � Q from i to j is characterized by a fixed cost for

using the mode, gijq and a variable cost (the slope of the mode), cijq.

Additionally, the flow using mode q on the arc (i, j) is restricted to a

minimum of Lij, q − 1 and a maximum of Lijq (see Fig. 1), where Lij0 = 0.

We assume that Lijκ � min {Si, dj}, i.e. that the maximum flow between

supplier i and customer j does not exceed neither the capacity Si nor

the demand dj, respectively. Note that the maximum capacity on an

arc might be restrictive, i.e. the inequality might be strict. Hence,

formally we consider a separable, lower-semicontinuous, piecewise

linear function with κ line segments defined on the interval from 0

to Lijκ (see Vielma et al., 2010 for more on other kinds of piecewise

linear functions).

2.1. The multiple-choice model

One standard way of representing a discontinuous, piecewise lin-

ear function is by the so-called Multiple-Choice Model. Using this for-

mulation, the problem can be stated as

(MCM) min
∑
i∈I

∑
j∈J

∑
q∈Q

(cijqxijq + gijqvijq), (1)

s.t.
∑
i∈I

∑
q∈Q

xijq = dj, ∀j ∈ J, (2)

∑
q∈Q

vijq ≤ 1, ∀(i, j), i ∈ I, j ∈ J (3)

∑
j∈J

∑
q∈Q

xijq ≤ Si, ∀ i ∈ I, (4)

xijq ≤ Lijqvijq, ∀(i, j, q), i ∈ I, j ∈ J, q ∈ Q (5)

xijq ≥ Lij,q−1vijq, ∀(i, j, q), i ∈ I, j ∈ J, q ∈ Q (6)

xijq ≥ 0, ∀(i, j, q), i ∈ I, j ∈ J, q ∈ Q (7)

vijq ∈ {0, 1}, ∀(i, j, q), i ∈ I, j ∈ J, q ∈ Q . (8)
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Fig. 2. The basic idea for each reformulation.

The objective, (1), is to minimize the total costs of supplying the cus-

tomers. Each customer has to receive an amount equal to its demand

by (2). Constraints (3) enforce that at most one mode is used between

each combination of supplier and customer. Constraints (4) state that

the solution has to obey the capacity at each supplier. Constraints (5)

and (6) bound the flow within the associated upper and lower bounds

for mode q between the supplier i and customer j, respectively. Vari-

able xijq represents the flow between i and j on the mode q and the

associated binary variable vijq is 1 if this mode is used, 0 otherwise. The

linear programming relaxation of the MCM is equivalent to replacing

the objective function by its lower convex envelope (see e.g. Croxton

et al., 2003a). We denote by MCM-LP the relaxed problem defined by

the program (1)–(8), where (8) is replaced by the constraints 0 � vijq

� 1, �(i, j, q), i � I, j � J, q � Q.

The two new formulations are based on the introduction of vari-

ables for each feasible flow-vector from either each supplier to all

the customers, or from all suppliers to each customer (see Fig. 2).

These models are denoted the Supplier-Based Model (SBM) and the

Customer-Based Model (CBM), respectively. Both formulations are ob-

tained by applying a Dantzig–Wolfe reformulation of the MCM, while

keeping either the demand constraints (2) (for the SBM) or the supply

constraints (4) (for the CBM) in the master problem.

2.2. The supplier-based model

Let χ i denote the set of all feasible flows from supplier i to the

m customers with an accumulated flow less than or equal to Si and

the flow on each arc (i, j) less than or equal to Lijκ , i.e. χ i := (xij)j � J :

0 � xij � Lijκ , � j � J and �j � Jxij � Si} and Ti denote the set of indices

of elements of χ i. That is, xt
i
∈ χi, for t � Ti, is a vector with m entries

and each entry xt
ij

represents the flow on the arc (i, j). For each flow

index t � Ti, we define the associated costs of the flow by Ct
i

and a

binary variable β t
i
, which is equal to one if the flow characterized

by the vector t is used and zero otherwise. Now, the PLTP can be

formulated as

(SBM) min
∑
i∈I

∑
t∈Ti

β t
i Ct

i , (9)

s.t.
∑
t∈Ti

β t
i = 1, ∀ i ∈ I, (10)

∑
i∈I

∑
t∈Ti

β t
i xt

ij = dj, ∀ j ∈ J, (11)

β t
i ∈ {0, 1}, ∀ i ∈ I, ∀ t ∈ Ti, (12)

The objective is to minimize the total cost as defined in Eq. (9). Con-

straints (10) state that for each supplier, exactly one flow in Ti must

be chosen, assuming that the all-zero flow belongs to Ti. The demand

of each customer must be satisfied by constraints (11). Finally, all

variables β t
i

must be binary.
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