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a b s t r a c t

The paper deals with the definition and the computation of surrogate upper bound sets for the bi-objective

bi-dimensional binary knapsack problem. It introduces the Optimal Convex Surrogate Upper Bound set,

which is the tightest possible definition based on the convex relaxation of the surrogate relaxation. Two exact

algorithms are proposed: an enumerative algorithm and its improved version. This second algorithm results

from an accurate analysis of the surrogate multipliers and the dominance relations between bound sets.

Based on the improved exact algorithm, an approximated version is derived. The proposed algorithms are

benchmarked using a dataset composed of three groups of numerical instances. The performances are assessed

thanks to a comparative analysis where exact algorithms are compared between them, the approximated

algorithm is confronted to an algorithm introduced in a recent research work.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Problem formulation and characteristics

Given a set of items J = {1, . . . , n} and a set of dimensions I =
{1, . . . , m}, we associate with each dimension i ∈ I a capacity ωi ∈ N1

and a set of weights wij ∈ N1 for each item j ∈ J. Moreover, each item is

available in a single copy. The multi-objective multi-dimensional binary

knapsack problem consists in packing a subset of J into a container

with limited capacity over the dimensions I. This must be done while

maximizing a profit according to a set of objectives K = {1, . . . , p}. For

this, a profit ck
j

∈ N1 is associated with each item j ∈ J according to

each objective k ∈ K. The general formulation of this problem is the

following

max

n∑
j=1

ck
j xj k = 1, . . . , p

s.t.

n∑
j=1

wij xj ≤ ωi i = 1, . . . , m

xj ∈ {0, 1} j = 1, . . . , n (pOmDKP)
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This problem has received a lot of attention, see e.g. Fréville (2004),

Varnamkhasti (2012), Lust and Teghem (2012) for recent surveys. It is

used for representing various practical problems as capital budgeting,

allocating processors (Kellerer, Pferschy, & Pisinger, 2004; Martello &

Toth, 1990; da Silva, Clímaco, & Figueira, 2004). For example, Clausen,

Hjorth, Nielsen, and Pisinger (2010) consider a special case of two-

dimensional knapsack for the problem of assigning seats in a train for

a group of people traveling together.

Many particular cases of this problem have been studied, and all

of them are NP-hard. We will denote this problem by (pOmDKP),

according to the number of objectives and dimensions. We will omit

the number of dimensions and/or the number of objectives in this no-

tation whenever p = 1 and/or m = 1. In the following, we will make

a particular distinction between the single-dimensional (m = 1) and

the multi-dimensional (m > 1) case. Indeed, (KP)problem can be con-

sidered as an “easy” NP-hard problem as several practically efficient

methods have been proposed for its exact solution (Kellerer et al.,

2004; Martello, Pisinger, & Toth, 1999; Pisinger, 1994). Their theoret-

ical time-complexity is pseudo-polynomial. (2OKP) problem is also

one of the most studied multi-objective combinatorial optimization

problems. A number of methods have been proposed for its exact

solution (Bazgan, Hugot, & Vanderpooten, 2009; Delort & Spanjaard,

2010; Jorge, 2010; Ulungu & Teghem, 1997; Visée, Teghem, Pirlot, &

Ulungu, 1998). Bazgan et al. (2009); Jorge (2010) have also provided

exact solution methods for (3OKP) problem.

(mDKP) problem is practically far more difficult than (KP) prob-

lem as pointed out by Fréville (2004). In the multi-objective case,
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instances of this problem are often used as a benchmark to com-

pare metaheuristics (Ishibuchi, Hitotsuyanagi, Tsukamoto, & Nojima,

2009; Jaszkiewicz, 2004; Tricoire, 2012; Zitzler & Thiele, 1999). How-

ever, this problem has received less attention in an exact context

(Florios, Mavrotas, & Diakoulaki, 2010; Lust & Teghem, 2012; Mavro-

tas, Figueira, & Antoniadis, 2011). To our knowledge, only one exact

method has been proposed for the specific (2O2DKP)case (Gandibleux

& Perederieieva, 2011; Perederieiva, 2011).

In this paper, we also consider the (2O2DKP) problem. The main

purpose is to design and compute a tight upper bound set for this

problem. Such a bound set is a crucial component when it is em-

bedded within an algorithm aiming to enumerate a complete set of

nondominated points of the (2O2DKP).

1.2. Efficiency, nondominance and bound sets

The main definitions, properties, and notations of multi-objective

combinatorial optimization are given now. A more complete intro-

duction can be found in Ehrgott (2005).

A multi-objective combinatorial optimization problem can be for-

mulated as

max{(z1(x), . . . , zp(x)) = Cx : x ∈ X}, (MOCO)

with a linear objective matrix C ∈ Rp×n, variables x ∈ Rn, and the fea-

sible set (in decision space Rn)

X := {x ∈ {0, 1}n : Ax � b, x � 0}.
Matrix A is an m × n matrix of constraints and b ∈ Rm the right hand

side vector. The image of X under C, i.e.,

Y := CX := {y = Cx ∈ Rp : x ∈ X}
is called the outcome set in objective space Rp.

We assume that no feasible solution optimizes all objectives si-

multaneously and use the following notations for componentwise

orders in Rp. Let y1, y2 ∈ Rp. We write y1 � y2 (y1 weakly dominates

y2) if y1
k

≥ y2
k

for k = 1, . . . , p; y1 ≥ y2 (y1 dominates y2) if y1 � y2 and

y1 �= y2; and y1 > y2 (y1 strictly dominates y2) if y1
k

> y2
k
, k = 1, . . . , p.

We define R
p

� := {x ∈ Rp : x � 0} and analogously R
p
≥ and R

p
>.

A feasible solution x̂ ∈ X is called efficient (weakly efficient) if there

does not exist x ∈ X such that z(x) ≥ z(x̂)
(
z(x) > z(x̂)

)
. If x̂ is (weakly)

efficient, then z(x̂) is called (weakly) nondominated. The efficient set

XE ⊆ X is defined as

XE := {x ∈ X : � x̄ ∈ X : z(x̄) ≥ z(x)},
and its image in objective space is referred to as the nondominated

set YN := z(XE). Equivalently, YN can be defined by YN := {y ∈ Y :

(y + R
p

�)∩ Y = {y}}. This concept is extended by defining SN := {s ∈
S : (s + R

p

�)∩ S = {s}} for an arbitrary set S ∈ Rp. The exact solution

of a multi-objective combinatorial optimization problem consists in

determining a complete set of efficient solutions, i.e. to determine at

least one efficient solution for each nondominated point.

As we consider here multi-objective combinatorial optimization

problems, several classes of efficient solutions need to be distin-

guished. Supported efficient solutions are optimal solutions of a

weighted sum single objective problem (Geoffrion, 1968)

max{λ1z1(x)+ · · · + λpzp(x) : x ∈ X} (MOCOλ)

for some λ ∈ R
p
>. Their images in objective space are supported non-

dominated points. We use the notations XSE and YSN, respectively. In

order to avoid a confusion with the weights of the items of (pOmDKP),
the weight vector λ ∈ R

p
> will be called direction in the following.

All supported nondominated points are located on the boundary of

the convex hull of Y (convY), i.e., they are nondominated points of

(convY)− R
p

�.

Nonsupported efficient solutions are efficient solutions that are

not optimal solutions of (MOCOλ) for any direction λ ∈ R
p
>. Nonsup-

ported nondominated points are located in the interior of the convex

hull of Y . In the particular bi-objective case, nonsupported nondom-

inated points are located in the interior of triangles the hypotenuse

of which is defined by consecutive supported nondominated points

with respect to z1. The set of nonsupported efficient solutions and

nondominated points are denoted respectively by XNE and YNN.

Finally, we can distinguish two classes of supported efficient so-

lutions. The set of extremal supported efficient solutions XSE1 is a

subset of XSE the corresponding point of which is an extreme point

of convY. YSN1 := z(XSE1) is the set of nondominated extreme points.

XSE2 := XSE \ XSE1 and YSN2 := YSN \ YSN1 are respectively the sets of

nonextremal supported efficient solutions and nondominated points.

The computation of the set YSN1 can be easily done in the bi-objective

context using the algorithm by Aneja and Nair (1979), under the as-

sumption that the corresponding single-objective problem can be

solved efficiently in practice.

Bounds on the optimal value of a single-objective problem are

crucial to design efficient solution methods in the single-objective

case. Their generalization to the multi-objective case called bound sets

(Ehrgott & Gandibleux, 2001) are used to bound YN . Several definitions

of bound sets have been proposed, we use the definition proposed by

Ehrgott and Gandibleux (2007). Contrary to the single-objective case,

the definitions of upper and lower bound sets are not symmetric. A

lower bound set for YN is generally given by a set of known feasible

points filtered by dominance. Upper bound sets for YN (or for any

subset of points in Np) can be obtained by far more various ways.

We introduce some additional terminology before the next defini-

tion. S is R
p

�-closed if the set S − R
p

� is closed and R
p

�-bounded if there

exists s0 ∈ Rp such that S ⊂ s0 − R
p

�.

Definition 1 (Ehrgott & Gandibleux, 2007). Let Ȳ ⊂ Rp. An upper

bound set U for Ȳ is an R
p

�-closed and R
p

�-bounded set U ⊂ Rp such

that Ȳ ⊂ U − R
p

� and U ⊂ (U − R
p

�)N .

In solution methods, Ȳ denote generally the set of nondominated

points of a subproblem of the considered problem (e.g. a relaxation).

The same way as the single-objective context, bound sets for Ȳ must

be as tight as possible for a reasonable computational cost. Ehrgott and

Gandibleux (2007) have proposed the notion of dominance between

bound sets.

Definition 2 (Ehrgott & Gandibleux, 2007). Given two upper bound

sets U1 and U2 for a same set Ȳ , U1 dominates U2 if U1 ⊂ U2 − R
p

� and

U1 − R
p

� �= U2 − R
p

�.

The dominance relation between bound sets is transitive. Nev-

ertheless, if we can always compare bound values in the single-

objective case, dominance between bound sets does not necessarily

occur (Fig. 1). Computing several upper bound values in the single-

objective context, the smallest defines naturally the tightest bound.

Proposition 1 provides a way to merge upper bound sets.

Proposition 1 (Ehrgott & Gandibleux, 2007). If U1 and U2 are upper

bound sets for a same set Ȳ and U1 − R
p

� �= U2 − R
p

� then U∗ := [(U1 −
R

p

�)∩ (U2 − R
p

�)]N is an upper bound set for Ȳ dominating U1 and U2.

It is interesting to note that the simultaneous use of several up-

per bound sets can thus be a way to obtain a particularly tight upper

bound set (Fig. 2). We provide some additional explanations based on

Figs. 1 and 2. We consider here polyhedral upper bound sets U defined

by a set of extreme points {y1, . . . , yk}, i.e. U = (conv{y1, . . . , yk} −
R2

�)N . U1 = (conv {y1, y2, y3})N and U2 = (conv {y4, y5, y6})N are

incomparable bound sets, i.e. there is no dominance relation be-

tween them. The bound set U∗ := [(U1 − R2
�)∩ (U2 − R2

�)]N (which
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