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a b s t r a c t

Real world applications for vehicle collection or delivery along streets usually lead to arc routing problems,

with additional and complicating constraints. In this paper we focus on arc routing with an additional

constraint to identify vehicle service routes with a limited number of shared nodes, i.e. vehicle service

routes with a limited number of intersections. This constraint leads to solutions that are better shaped for

real application purposes. We propose a new problem, the bounded overlapping MCARP (BCARP), which is

defined as the mixed capacitated arc routing problem (MCARP) with an additional constraint imposing an

upper bound on the number of nodes that are common to different routes. The best feasible upper bound

is obtained from a modified MCARP in which the minimization criteria is given by the overlapping of the

routes. We show how to compute this bound by solving a simpler problem. To obtain feasible solutions for

the bigger instances of the BCARP heuristics are also proposed. Computational results taken from two well

known instance sets show that, with only a small increase in total time traveled, the model BCARP produces

solutions that are more attractive to implement in practice than those produced by the MCARP model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Capacitated arc routing mathematical models are often used to

formulate delivering or collecting problems where the demands are

associated with the links of the underlying network.

There are many variants of these problems. In the typical capaci-

tated arc routing problem (CARP) the objective is to identify minimum

cost (or time) routes to be traversed by the vehicles of a given fleet to

perform the service in the streets of a network, starting and ending at

a depot. The street segments demanding for service are called tasks,

and have a given demand to be satisfied by one of the vehicles. The

fleet is homogeneous, and the vehicles capacity must be respected.

The CARP was introduced by Golden and Wong (1981), and orig-

inally defined on undirected graphs. Since then, several CARP varia-

tions and generalizations have been reported in the literature, many

of them motivated by real life applications, like waste collection,

postal distribution or winter gritting. Dror (2000), Wøhlk (2008), and

Corberán and Prins (2010) survey the research on the CARP and its

variations, as well as their applications.
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The Mixed CARP (MCARP) generalizes the CARP for mixed

graphs, that is, graphs with arcs and edges. The MCARP is more

suited to situations where the direction of the traversals has to be

taken into account. This is the case of household waste collection

(see e.g. Bautista, Fernández, & Pereira, 2008; Belenguer, Benavent,

Lacomme, & Prins, 2006; Ghiani, Guerriero, Improta, & Musmanno,

2005; Gouveia, Mourão, & Pinto, 2010; Mourão & Amado, 2005;

Mourão, Nunes, & Prins, 2009), or road network maintenance (see e.g.

Amaya, Langevin, & Trépanier, 2007). The MCARP is NP-hard, since it

generalizes the CARP, which is known to be NP-hard (Golden & Wong,

1981).

Since this work is motivated by a refuse collection problem,

henceforward the task demands represent the amounts of refuse to

collect.

Real world applications often require other constraints that must

be added to the basic MCARP model. In some cases, it is not even easy

to decide how to measure the additional specifications. Examples of

such situations arise when workloads need to be equitably distributed

among the vehicles, or different vehicle routes have to be constrained

to separated geographical regions. On the recent paper of Ghiani,

Laganà, Manni, Musmanno, and Vigo (2014) strategic and tactical

issues involving these type of constraints are surveyed for solid waste

management systems.

Also, too many intersections of the service areas of different

vehicles can complicate the activities to be held in a region (see
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Fig. 1. lpra2 instance – optimal solutions for three vehicles.

e.g., Mourgaya & Vanderbeck, 2007; Muyldermans, Cattrysse,

Van Oudheusden, & Lotan, 2002). According to Kim, Kim, and Sahoo

(2006) and Poot, Kant, and Wagelmans (2002) for instance, solutions

with an excessive number of vehicle crossovers tend to be rejected by

the practitioners. Kim et al. (2006) also remark that the overlapping

of service areas is strongly related to the intersection of the vehi-

cle routes. The number of intersections may decrease if each vehicle

service area is concentrated in a geographical region.

An adequate definition of these “nice” regions (sets of arcs and

edges) is not easy to state since besides needing to be separated and

workload balanced, their shape should have other “nice” character-

istics. These, apart from being subjective, also allow practitioners to

accept or reject a solution after a single viewing. A survey on measures

used in the literature for the classification of the regions is provided

later in Section 2.

Two of these “attractive” characteristics for the service areas are:

(i) connectivity and (ii) compactness. While connectivity can be clearly

defined as the possibility of traveling between any two points of a

region without leaving it, there are different measures of the com-

pactness of a region (MacEachren, 1985). In general, these measures

compare the region against an “ideal compact shape”, such as a circle

or a square, or they are based on the distances between points in the

region – higher distances mean, in general, less compact regions.

Typical solutions for MCARP models are usually very unsatisfac-

tory in terms of the above criteria. Fig. 1a depicts the optimal MCARP

solution for instance lpra2 (see Section 6.1 for a description of the data

set), where we can see the overlap of several different vehicle routes

(identified by a different color) and very irregular (thus, not “nice”)

regions served by each route. Furthermore, we even observe discon-

nected sequences of tasks within each vehicle service. Thus, solutions

resulting from solving the “pure” MCARP can be very inadequate to

implement in practice.

The disconnected components observed in the MCARP solutions

has motivated our first attempt to improve the shape characteristics

of the routes. In this approach, we have imposed constraints guar-

anteeing that the set of tasks within each route are connected. We

omit from this paper the details of how we have modeled and imple-

mented this approach. However, we refer the reader to Fig. 1b, which

illustrates the solution for the instance lpra2 obtained after adding

such “connectivity” constraints to the model. It is quite clear that this

solution, despite having connected sets of tasks, still exhibits several

undesirable situations such as vehicle routes that overlap and spread

(being non compact) in the collection zone.

This attempt to model the “nice” features of the routes by adding

connectivity constraints illustrates what we have mentioned before,

namely that it may not be straightforward to measure and describe

the “attractiveness” specification of the routes, in a mathematical

way.

Motivated by this unsuccessful experiment, in this paper we pro-

pose, study and test a new model that uses a constraint simpler

to formulate and that is based on a different way to measure the

non-overlapping of the vehicle routes. We call this new problem the

bounded overlapping MCARP (BCARP). The overlapping is measured

in terms of the number of nodes that are common to the tasks of

different routes.

One motivation for considering this measure is as follows. We may

interpret the set of these common (shared) nodes as representing

the boundaries between the regions served by each route, and their

number as the length of the corresponding boundaries. Thus, one

way to promote “nice” (disjoint and compact) regions is by limiting

the length of their boundaries.

Fig. 1c depicts the optimal BCARP solution for instance lpra2, where

we have included the new constraint on non-overlapping routes. It

is interesting to compare the three solutions in the figure in order to

see the advantage of the latest approach, in terms of compactness and

separation of the regions served by each route. Moreover, although

connectivity was not enforced in the BCARP model, the resulting

solution has connected sets of tasks in each route.

In this work we consider three main measures to evaluate the

“nice” characteristics of solutions. While the first one measures the

connectivity, the other two try to measure the compactness, as

detailed in Section 5.

This paper is organized as follows. After the review literature

(Section 2), the relevant notation is presented in Section 3.1. Next,

in Section 3.2 we review a model for the MCARP from Gouveia et al.

(2010) which will be used as a backbone to model the more restric-

tive version of the MCARP here studied. In Section 3.3 we describe

a variant where we want to minimize the number of shared nodes,

named as the non overlapping MCARP (NOMCARP). The value of the

NOMCARP objective function is then used to define the upper bound

for the number of overlapping nodes in the MCARP. In Section 3.4 we

propose a model for the BCARP that is obtained from combining the

MCARP model with constraints from the NOMCARP, and a constraint

guaranteeing the referred bounded overlapping. Section 4 is devoted

to the methodology employed to find feasible solutions for the BCARP.

Solutions for small sized instances are obtained by solving the mod-

els in sequence as described above. Heuristics are developed and used

to obtain solutions for the larger sized instances. The measures intro-

duced to evaluate the solutions (Section 5) precede the computational

results. These involve two sets of well known benchmark instances

and are presented and analyzed in Section 6, before the conclusions,

in Section 7.
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