
European Journal of Operational Research 244 (2015) 77–85

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

A parallelised distributed implementation of a Branch

and Fix Coordination algorithm

Adela Pagès-Bernaus a,∗, Gerardo Pérez-Valdés a,b, Asgeir Tomasgard a

a Institute for Industrial Economics and Technology Management, Norwegian University of Science and Technology, Norway
b Applied Economics Department, SINTEF Technology and Society, Norway

a r t i c l e i n f o

Article history:

Received 7 January 2014

Accepted 3 January 2015

Available online 19 January 2015

Keywords:

Stochastic mixed-integer problems

Branch and fix coordination algorithm

Parallel programming

a b s t r a c t

Branch and Fix Coordination is an algorithm intended to solve large scale multi-stage stochastic mixed integer

problems, based on the particular structure of such problems, so that they can be broken down into smaller

subproblems. With this in mind, it is possible to use distributed computation techniques to solve the several

subproblems in a parallel way, almost independently. To guarantee non-anticipativity in the global solution,

the values of the integer variables in the subproblems are coordinated by a master thread. Scenario ‘clusters’

lend themselves particularly well to parallelisation, allowing us to solve some problems noticeably faster.

Thanks to the decomposition into smaller subproblems, we can also attempt to solve otherwise intractable

instances. In this work, we present details on the computational implementation of the Branch and Fix

Coordination algorithm.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many infrastructure problems nowadays are solved using opti-

misation and equilibrium models (Li, Gabriel, Shim, & Azarm, 2011;

Rømo et al., 2009). These problems often imply handling investments,

which can be represented by yes/no decisions (“Should a pipeline be

built or not?”) and modelled with binary variables. Mixed Integer

Programming problems (MIPs), and specially those containing binary

variables, are common in problems of transportation (Christiansen,

Fagerholt, & Ronen, 2004), energy (Wallace & Fleten, 2003), real-state,

etc. In these cases, strategic investment decisions influence a project’s

development over long timespans. For example, expensive building

projects induce costs and deliver returns for many years after the de-

cision of building was made. Once built, under-utilisation impacts the

economic prospects of the project.

Dealing with these long-lasting investments in the real world, al-

most invariably, involves uncertainty in the parameters of the model

we are trying to create. Prices, supplies and consumptions might dif-

fer significantly from estimates, unexpected events could make these

estimates imprecise, or new legislation can turn once attractive in-

∗ Corresponding author. Tel.: +47 73591267.

E-mail addresses: adela.pages@iot.ntnu.no (A. Pagès-Bernaus),

gerardo.valdes@iot.ntnu.no (G. Pérez-Valdés), asgeir.tomasgard@iot.ntnu.no

(A. Tomasgard).

vestment into expensive ones (Alonso-Ayuso, Escudero, & Ortuño,

2003; Kall & Wallace, 1994).

Uncertainty, therefore, further complicates already hard-to-solve

MIPs with the introduction of additional variables/parameters: MIPs

are complex because of the large number of combinatorial choices

they imply; stochastic problems are complicated because of the

amount of scenarios they involve if a lot of variability happens over

long time spans. As a result, stochastic MIPs are likely to result in

complex problems, even while working exclusively with linear con-

straints (SMILPs).

In view of this, the Branch and Fix Coordination (BFC) algorithm

was developed to tackle a certain class of SMILPs, namely, those

in which both integer and continuous variables appear in (gener-

ally) every stage of the problem, all integer variables are binary,

and no multi-scenario constraints appear (Alonso-Ayuso et al., 2003;

Escudero, Garín, Merino, & Pérez, 2010b). BFC is based on the well-

known Branch and Bound (B&B) algorithm, with the main difference

that the search tree evaluates many subproblems at each step, and

the decisions to branch, prune or bound are done taking all sub-

problems into consideration. The first version of the BFC was devel-

oped by the groups of Alonso-Ayuso et al. (2003) to take advantage

of scenario-wise decomposition schemes for solving special cases of

two-stage SMILPs (for more applications see also Escudero, Garín,

Merino, & Pérez, 2007, 2009b, 2010a). The algorithm was generalised

to multi-stage SMILPs with binary and continuous variables in any

stage (Escudero, Garín, Merino, & Pérez, 2009a, 2009c; Escudero et al.,

http://dx.doi.org/10.1016/j.ejor.2015.01.004

0377-2217/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.ejor.2015.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2015.01.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:adela.pages@iot.ntnu.no
mailto:gerardo.valdes@iot.ntnu.no
mailto:asgeir.tomasgard@iot.ntnu.no
http://dx.doi.org/10.1016/j.ejor.2015.01.004
http://creativecommons.org/licenses/by-nc-nd/4.0/

78 A. Pagès-Bernaus et al. / European Journal of Operational Research 244 (2015) 77–85

2010b). Further refinements such as the parallelisation of the algo-

rithm or contemplating explicitly non-symmetric trees have proven

to be successful in reducing running times (Aldasoro, Escudero,

Merino, & Pérez, 2013; Escudero, Garín, Merino, & Pérez, 2012).

In this paper, we present a particular implementation of the BFC

routine, which uses parallel processing to solve many subproblems

at the same time in a way that makes the process arguably faster

and more efficient. The resulting application is able to solve problems

with dimensions which are orders of magnitude larger than those re-

ported in past papers, and also coordinating significantly more clus-

ters and variables without apparent loss of efficiency. Moreover, this

implementation improves over the existing ones with added flexibil-

ity (allowing for more branching options and data storage), as well

as doing away with some bounding strategies in favour of looser but

faster searches.

The framework currently in place allows for a mostly seamless

transition into solving fully-decomposed problems, which can then

be stored in several files without the need to load the full problem

anywhere in the solution process.

The paper is organised as follows: first, we present some formu-

lations useful for the description of the algorithm in Section 2. After

that, in Section 3, we state the problems needed to be solved at several

steps of this particular BFC implementation, which is itself described

in Section 4, along with some details on the parallelisation we use.

Later in Section 5, we show several problem instances, whose analysis

suggests that BFC is competitive when compared to commercial MIP

solvers.

2. Problem formulation

Consider the Deterministic Equivalent Model (DEM) of a stochastic

mixed integer linear programming problem with only binary and

continuous variables X, Y , and its matrix form,
[
AX + BY

]
. For most

SMILPs, we can easily identify blocks in these matrices that represent

constraints specific to a scenario tree node, or constraints that link

one node in the tree to its parent nodes, children nodes, and so on.

We can use this idea of blocks, and the constraints and variables they

involve, to represent different variations of the problem by indexing

sections of the constraint matrices which have special interest to us

with a set of nodes which in turn corresponds to a row of blocks in

the matrix.⎡
⎢⎣

AG1

AG2

...

⎤
⎥⎦ X +

⎡
⎢⎣

BG1

BG2

...

⎤
⎥⎦ Y

Suppose G is the set of all nodes g of a (not necessarily symmetric)

scenario tree, and G2 the set of all subsets of G (i.e. its power set).

Further, let G1 be the subset of one-element sets in G2, i.e., G1 := {m ∈
G2 : |m| = 1}; clearly, there is a one-to-one correspondence between

the nodes in G and the sets in G1.

At each node g, we have binary variables xg,i and continu-

ous variables yg,j. We use the paired sets of indices Ig, Jg so that

Xg = {xg,i : i ∈ Ig} and Yg = {yg,j : j ∈ Jg}, and in turn X = {Xg : g ∈ G},

and Y = {Yg : g ∈ G}.

First, let us present a simplified formulation of a general stochastic

problem in compact formulation. Here, we only differentiate between

groups of constraints that (a) affect variables belonging to one node,

or (b) affect in general all variables (for example, recourse constraints,

among others). We then index each set of rows using either the set

G ∈ G1 corresponding to the node the set of rows involves, or the

entire node set G. This gives AG and BG, for each G ∈ G1 ∪ {G}, in

which each G is a member of a set of sets. The DEM of this problem is

min: f (X, Y) =
∑
g∈G

wg(agXg + bgYg) (1a)

s.t. AGX + BGY ≤ CG, G ∈ G
1 ∪ {G}; (1b)

xg,i ∈ {0, 1}, i ∈ Ig, g ∈ G; (1c)

yg,j ∈ R, j ∈ Jg, g ∈ G; (1d)

with properly defined weights wg for each node.

In problem (1), all constraints which affect the variables of more

than one node of the scenario tree appear as AGX + BGY ≤ CG in ex-

pression (1b). However, they do not necessarily need to be aggregated

like this. By using this indexing idea, we can just as easily group nodes

into relevant sets which correspond to scenarios, or to groups of sce-

narios, or to stages in the scenario tree, and use these sets to index

parts of the constraint matrices. This helps us to write different for-

mulations and variations of a SMILP DEM in a condensed notation.

Let Si be the set of nodes g which belong to stage i (i.e. S1 contains

only the root node(s), S2 contains the immediate children to the root

nodes, and so on). If the tree has S stages, make S = {S1, . . . , SS} the

family of all stage sets. Also, for the set of leaf nodes g ∈ SS, create a

partition L = {Lc} so that all nodes in a given Lc have a common root.

This makes it possible to define a cluster (Escudero et al., 2010a) as

we use it in this work:

Definition 1 (Cluster). For each element Lc ∈ L, a cluster Cc is a set

of nodes which contains all elements of Lc and their parent nodes up

to the root. Then C = {Cc} is the set of all clusters in a scenario tree.

With the families S and C thus defined, we can write constraints

for all the nodes in one stage, or all the nodes of one scenario, or all the

nodes in a given set of scenarios, and index them with sets regardless

of the formulation chosen for the model.

For example, if we consider the stochastic scenario tree in Fig. 1a,

the set of nodes will be G = {g1, . . . , g6}, and consequently G1 =
{{g1}, . . . , {g6}}.

The only possible cluster for this tree is C = {{g1, g2, . . . , g6}},

with S = {{g1}, {g2, g3}, {g4, g5, g6}}. In this manner, the formulation

would be equivalent to that in problem (1).

On the other hand, if we define a different set of

nodes G = {g1, . . . , g9}, such as the ones shown in Fig. 1b,

with S = {{g1, g2, g3}, {g4, g5, g6}, {g7, g8, g9}} and C = {{g1, g4, g7},
{g2, g5, g8}, {g3, g6, g9}} being the only possible set of clusters, we

can formulate the split-variable formulation of (1), MP1, once we

define A as A = {{g1, g2, g3}, {g4, g5}} as the set of all (non-trivial)

non-anticipativity classes of equivalence. Notice that the weights wg

should be modified accordingly for the problems to be equivalent.

MP1 :

min : f (X, Y) =
∑
g∈G

wg(agXg + bgYg) (2a)

s.t. AGX + BGY ≤ CG, G ∈ C ∪ G
1 ∪ S; (2b)

Xg = Xh, Yg = Yh, ∀g, h ∈ An, An ∈ A; (2c)

xg,i ∈ {0, 1}, i ∈ Ig, g ∈ G; (2d)

yg,j ∈ R, j ∈ Jg, g ∈ G. (2e)

Formulation MP1 is flexible enough to describe both the usual

stochastic formulations, but also to describe formulations in between

those, such as that shown in Fig. 1c. For large scenario trees, there are

as many such possible mixed formulations (analogous to the splitting-

compact representation used in Escudero et al., 2010a), as stages in

the tree.

The definitions of families L, A and, more important to us, C, are

closely linked to the selection of a break stage (effectively equivalent

to that in Escudero et al., 2012 for most scenario trees).

Download English Version:

https://daneshyari.com/en/article/6896656

Download Persian Version:

https://daneshyari.com/article/6896656

Daneshyari.com

https://daneshyari.com/en/article/6896656
https://daneshyari.com/article/6896656
https://daneshyari.com

