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a b s t r a c t

Despite the fact that the Capacitated Arc Routing Problems (CARPs) received substantial attention in the

literature, most of the research concentrates on the symmetric and single-depot version of the problem. In

this paper, we fill this gap by proposing an approach to solving a more general version of the problem and

analysing its properties. We present an MILP formulation that accommodates asymmetric multi-depot case

and consider valid inequalities that may be used to tighten its LP relaxation. A symmetry breaking scheme

for a single-depot case is also proposed. An extensive numerical study is carried to investigate the properties

of the problem and the proposed solution approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Capacitated Arc Routing Problem (CARP) originally defined by

Golden and Wong (1981) has been extensively studied during the

recent decades due to its numerous potential applications, including

post delivery, waste collection, winter services (e.g. salt gritting or

snow plowing), public transport routing, etc. To fulfil the needs of

applications, a number of extensions and modifications of the CARP

were considered. These can be roughly classified based on the follow-

ing features:

• symmetric (undirected) vs. asymmetric (including a particular

case of directed) network;
• single vs. multiple vehicles;
• single vs. multiple depots;
• single vs. multiple objectives (see, e.g., Grandinetti, Guerriero, La-

ganá, & Pisacane, 2003);
• additional constraints: time windows, priorities, etc.

For an overview of the modifications and solution methods we re-

fer the reader to Corberan and Prins (2010); Hertz (2005). The avail-

able solution approaches can be divided into two broad categories:

(a) those based on a reduction of the ARP to the Vehicle (Node) Rout-

ing Problem (VRP) (Longo, de Aragão, & Uchoa, 2006), and (b) those

designed specifically for the ARP. The success of the first group of

approaches is partially based on the fact that the VRP is substantially

better studied than the ARP. At the same time, the transformation

of the ARP to the VRP ignores sparsity of the underlying graph and
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creates computational problems for larger networks. On the contrary,

most of the original ARP approaches utilise the sparse nature of real-

istic road networks (see Fig. 1), which allows large instances at least

to be handled, if not solved to optimality (see, e.g., Bartolini, Cordeau,

& Laporte, 2013; Bode & Irnich, 2012, 2014; Corberan, Oswald, Plana,

Reinelt, & Sanchis, 2012 for a single vehicle case).

As seen from the literature, most research concentrates on the

undirected version of the problem (see, e.g., Belenguer & Benavent,

2003; Bode & Irnich, 2014 and references within). At the same time,

one way streets are not uncommon, which implies that a realistic ap-

proach should be able to handle this case. Furthermore, we could not

find an exact approach dealing with the multi-depot CARP – another

natural extension of the original problem. These observations moti-

vated us to consider a more general version of the CARP with multiple

depots and directed arcs.

The major goal of this paper is to study the properties of the CARP

and to consider the possibility of finding exact solutions to the multi-

depot CARP for realistic (large, sparse, asymmetric) road networks.

This paper is organised as follows. The next section presents the

basic MILP formulation utilised throughout the paper. Section 3 fo-

cuses on the inequalities that can be used to tighten the formula-

tion, followed by Section 4 describing our branch-and-cut solution

approach. Section 5 provides a computational study of our approach.

Finally, Section 6 concludes the paper with a summary of main results

and future research directions.

2. The basic MILP model

In this section, we propose a two-index MILP formulation for the

asymmetric multi-depot CARP. First, we introduce some notions and

notation.
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Fig. 1. Sparsity of real road networks for several urban areas in Europe and USA. Clearly,

the number of arcs is of order n, i.e. much smaller than the potential limit of n2 (n is

the number of nodes).

2.1. Notions and notations

Through the rest of the paper, let G(V, A, w) denote a directed

weighted graph with the set of vertices V (|V| = n), the set of arcs A

(|A| = m) and a weight function w(·) : A → R+. Given some set S ⊂ V ,

G(V \ S)denotes a graph obtained from G by deleting each vertex from

S together with all incident arcs.

A walk of length L in G is a sequence i1 − i2 − · · · − iL of vertices

such that there is an arc between each consecutive pair, i.e. (il, il+1) ∈ A

for all l = 1, . . . , L − 1. Without any ambiguity one may think of a

walk in terms of the corresponding arcs, rather then vertices. Under

a tour, we understand a walk for which holds i1 = iL, and by the

weight of a walk we understand the sum of the weights of all arcs

in it. Note that the multiplicity of arcs in a walk does matter, i.e.

if some arc is traversed three times then its weight contributes to

the weight of the walk with a factor of 3. An elementary cycle is a

tour traversing each vertex and arc at most once. Given a directed

cycle i1 − i2 − · · · − ij − · · · − ik − · · · − iL, arc (ij, ik) is a forward chord

if i1 − i2 − · · · − ij − ik − · · · − iL is also a directed cycle. Respectively,

arc (ik, ij) is a backward chord.

We say that vertex j is reachable from vertex i, if there exists a

directed i − j path; arc (j, l) is reachable from i, if j is reachable from i.

Further, for any subset S ∈ V let us denote by δ+(S) = {(i, j) ∈
A | i ∈ S, j ∈ V \ S} and δ−(S) = {(i, j) ∈ A | i ∈ V \ S, j ∈ S} the sets of arcs

having one of the endpoints in S; for singletons we use shortcuts

δ+(i) = δ+({i}) and δ−(i) = δ−({i}).
2.2. The formulation

The problem under consideration can be formalised as follows.

Given a directed weighted graph G(V, A, w), a demand function d(·) :

A → R+, selected vertices (depot vertices) vd
k

∈ V (k ∈ K) and a number

Q ∈ R+ (capacity), the goal is to find:

• |K| tours of the minimum total weight, each tour traversing a

corresponding vertex vd
k

(k ∈ K);
• an assignment of arcs with positive demand to the tours, such that

each arc is assigned to one of the tours and the sum of demands

assigned to a tour does not exceed Q .

Let us denote da = d(a), Ad = {a ∈ A | d(a) > 0} and introduce two sets

of variables: zk
a ∈ Z+ (a ∈ A) denote how many times arc a ∈ A is tra-

versed by tour k, and xk
a ∈ {0, 1} (a ∈ Ad) reflect the assignment of arcs

to the tours. Now, the problem can be formulated as follows.
∑
k∈K

∑
a∈A

wazk
a −→ min (1)

s.t.∑
a∈A

daxk
a ≤ Q, k ∈ K (2)

∑
k∈K

xk
a = 1, a ∈ Ad (3)

∑
a∈δ+(i)

zk
a =

∑
a∈δ−(i)

zk
a, i ∈ V, k ∈ K (4)

xk
a ≤ zk

a, a ∈ Ad, k ∈ K (5)
∑

a∈δ−(i)

uk
a ≤ 1, i ∈ V, k ∈ K (6)

uk
a ≤ zk

a, a ∈ A, k ∈ K (7)
∑

a∈δ−(vd
k
)

uk
a = 0, k ∈ K (8)

yk
vd

k

= 0, k ∈ K (9)

yk
j ≥ yk

i + 1 + M
(
uk

(i,j) − 1
)
, (i, j) ∈ A, k ∈ K (10)

∑
a∈δ−(i)

uk
a ≥ 1

M

∑
a∈δ+(i)

zk
a, i ∈ V \ {vd

k}, k ∈ K (11)

zk
a ∈ Z+, a ∈ A, k ∈ K (12)

xk
a ∈ {0, 1}, a ∈ Ad, k ∈ K (13)

yk
i ∈ R+, i ∈ V, k ∈ K (14)

uk
a ∈ {0, 1}, a ∈ A, k ∈ K (15)

Objective (1) explicitly minimises the total weight of all the tours. The

capacity of each tour is limited by constraints (2), while constraints

(3) ensure that each demand arc is served. Constraints (4) are flow

conservation constraints. Further, constraints (5) ensure that only

traversed demand arcs can be assigned to a tour. Finally, constraints

(6)–(11) ensure connectedness of each tour by constructing a tree

rooted at the depot vertex vd
k

and spanning all vertices traversed by

a tour. The tree is oriented so that there is a directed path from the

root to each leaf. Variables uk
a reflect the arcs in such a tree, while

variables yk
i

denote the level of vertex i in a tree. The root has level

0 (as assigned by constraints (9)), its neighbours have level 1, etc.

Constraints (6) and (7) ensure that each vertex in the tree has at most

one incoming arc and that the tree contains only the traversed arcs,

respectively. Constraints (10) prohibit cycles. Constraints (11) ensure

that each traversed vertex, except the depot, has an incoming arc

in the tree. Parameter M in (10) and (11) is a large enough positive

number. Note that constraints (6)–(11) are given here purely on the

purpose of making the formulation complete and are not used further

in this paper.

It is not hard to understand that the proposed formulation can be

adjusted for the case of an undirected graph by assuming that each

undirected edge is represented by two arcs and replacing constraints

(3) by:
∑
k∈K

xk
(i,j) + xk

(j,i) = 1, (i, j) ∈ Ad. (16)

Though this formulation has a polynomial size, it is quite exten-

sive, both in terms of constraints (|Ad| + (4 + 3n + 2|Ad| + 5m)|K|)
and variables (m|K| + |Ad| · |K| + n|K| + m|K|), 2m|K| + |Ad| · |K| of

which are integer. In case all arcs have positive demands, Ad = A

holds and these quantities become n + (4 + 3n + 7m)|K|, (n + 3m)|K|
and 3m|K|, respectively. However, it can be seen that as much as

(3 + 3n + 5m)|K| constraints and (n + m)|K| variables (m|K| of which

are integer) are used purely to guarantee connectedness of the tours.

In fact, constraints (6)–(11) can be replaced by the following subtour

eliminating constraints:

∑
a∈δ+(S)

zk
a ≥ 1

M

∑
a∈A′

zk
a, k ∈ K, (17)
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