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a b s t r a c t

This paper proposes a novel surrogate-model-based multiobjective evolutionary algorithm called
Differential Evolution for Multiobjective Optimization based on Gaussian Process models (GP-DEMO).
The algorithm is based on the newly defined relations for comparing solutions under uncertainty. These
relations minimize the possibility of wrongly performed comparisons of solutions due to inaccurate
surrogate model approximations. The GP-DEMO algorithm was tested on several benchmark problems
and two computationally expensive real-world problems. To be able to assess the results we compared
them with another surrogate-model-based algorithm called Generational Evolution Control (GEC) and
with the Differential Evolution for Multiobjective Optimization (DEMO). The quality of the results
obtained with GP-DEMO was similar to the results obtained with DEMO, but with significantly fewer
exactly evaluated solutions during the optimization process. The quality of the results obtained with
GEC was lower compared to the quality gained with GP-DEMO and DEMO, mainly due to wrongly
performed comparisons of the inaccurately approximated solutions.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Optimization problems are present in our everyday life and
come in a variety of forms, e.g. the task to optimize certain proper-
ties of a system by correctly choosing the system parameters.
Many of these optimization problems require the simultaneous
optimization of multiple, often conflicting, criteria (or objectives).
These problems are called multiobjective optimization problems.
The solution to such problems is not a single point, but a family
of points, known as the Pareto-optimal set. This set of solutions
gives the decision maker an insight into the characteristics of the
problem before a single solution is chosen.

One of the most effective ways to solve problems with
more objectives is to use multiobjective evolutionary algorithms
(MOEAs). MOEAs are population-based algorithms that draw inspi-
ration from optimization processes that occur in nature. During the
optimization process, in order to find a Pareto-optimal set, a lot of
different solutions have to be assessed (evaluated). These solution
evaluations can be costly, dangerous or computationally expen-
sive. In such cases the goal is to minimize the number of exactly

evaluated solutions, but still find the best solutions. In this paper
we focus on computationally expensive problems, where one solu-
tion evaluation takes a lot of time.

In order to obtain the results of such an optimization problem
more quickly (or even be able to obtain them in reasonable amount
of time), we can use surrogate models in the optimization process
to approximate the objective functions of the problem. To evaluate
a solution, instead of using a time-consuming exact evaluation, a
solution can be approximated with the surrogate model. Since
one solution approximation is (much) faster, the whole optimiza-
tion process can be accelerated. However, note that the time
needed to create and update the surrogate models during the opti-
mization process has to be considered and included in the whole
duration of the optimization process. So, in the case where the
exact solution evaluations are quick, it can happen that the surro-
gate-model-based optimization takes longer than the optimization
without surrogates.

In surrogate-model-based multiobjective optimization, approx-
imated values are often inappropriately used in the solution com-
parison. As a consequence, exactly evaluated good solutions can be
discarded from the population because they appear to be domi-
nated by the inaccurate and over-optimistic approximations. This
can slow the optimization process or even prevent the algorithm
from finding the best solutions.
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Some surrogate models provide a distribution, from which the
approximated value and also the confidence interval of the approx-
imation can be calculated. Using this confidence interval, we define
new dominance relations that take into account this uncertainty
and propose a new concept for comparing solutions under uncer-
tainty that requires exact evaluations only in cases where more
certainty is needed. This minimizes the mistakes made in compar-
isons of inaccurately approximated solutions.

Based on this concept we propose a new surrogate-model-
based multiobjective evolutionary algorithm, called Differential
Evolution for Multiobjective Optimization based on Gaussian
Process modeling (GP-DEMO). This algorithm is an extension of
the Differential Evolution for Multiobjective Optimization (DEMO)
algorithm (Robič & Filipič, 2005), which uses differential evolution
to effectively solve numerical multiobjective optimization
problems and, in addition, emphasizes the variation operators. In
GP-DEMO, Gaussian Process (GP) modeling is employed to find
approximate solution values together with their confidence inter-
vals. Then, instead of comparing the solutions using the Pareto
dominance relation, GP-DEMO uses the new uncertainty-based
dominance relations, requiring exact evaluations of solutions as
needed. The efficiency of GP-DEMO is assessed on several bench-
mark and two real-world optimization problems.

The structure of this paper is as follows. In Section 2, we over-
view the work done in the field of surrogate-model-based optimi-
zation, especially in multiobjective optimization. In Section 3, we
describe the Gaussian Process modeling that is used to build the
surrogate models in GP-DEMO. Then, in Section 4, we describe
the new relations and methods for comparing solutions (presented
with and without uncertainty). The GP-DEMO algorithm is pre-
sented in Section 5. In Section 6, we test and compare GP-DEMO
with two other algorithms on benchmark and real-world multiob-
jective optimization problems. Finally, Section 7 concludes the
paper with a summary of the work done and our ideas for future
work.

2. Related work

In the literature the term surrogate model (sometimes also
meta-model) based optimization is used where, during the
optimization processes, some solutions are not evaluated with
the original objective function, but are approximated using a
model of this function. Different modeling methods are used to
build the surrogate models. For single and multiobjective optimi-
zation similar methods are used. These methods typically return
only one approximated value, which is why in multiobjective prob-
lems several models have to be used, so that every model approx-
imates one objective. Some of the most commonly used methods
are the Response Surface Method (Myers & Montgomery, 1995),
Radial Basis Function (Hardy, 1971), Neural Network (Specht,
1990), Kriging (Stein, 1999) and Gaussian Process modeling
(MacKay, 1998; Rasmussen & Williams, 2006; Seeger, 2004).

In single-objective optimization, the usage of surrogate models
is well established and has proven to be successful. In the literature
many different algorithms and various modeling techniques are
used to solve benchmark and real-world problems (Emmerich,
Giotis, Özdemir, Bäck, & Giannakoglou, 2002; Zhang & Sanderson,
2007). The results typically show that the surrogate-model-based
optimization in comparison with optimization without surrogates
provides comparable results in fewer objective function evalua-
tions (Jin, Olhofer, & Sendhoff, 2001; Zhou, Ong, Nair, Keane, &
Lum, 2007). The use of differential evolution in combination with
surrogate models is mentioned in Zhang and Sanderson (2007).
The authors presented an algorithm based on differential evolution
that generates multiple offspring for each parent and chooses the

promising one based on the confidence and the approximation of
the current surrogate model.

In the field of surrogate-model-based multiobjective optimiza-
tion, where the result is not just one solution but a nondominated
front of solutions, the problem of finding these solutions is even
more challenging. There are many approaches that differ in terms
of which solutions are approximated and how they use the
approximations. Surrogate models can aim at either a global
approximation of the objective function, or a local one, focusing
on the neighborhood of the best current individuals. In Zhou
et al. (2007), the authors used a combination of local and global
surrogate models for solving optimization problem of Aerody-
namic Shape Design.

Within surrogate-model-based optimization algorithms a
mechanism is needed to find a balance between the exact and
approximate evaluations. In evolutionary algorithms this mecha-
nism is called evolution control (Jin, 2003) and can be either fixed
or adaptive.

In fixed evolution control, the surrogate model is trained from
previously exactly evaluated solutions and then used directly
instead of expensive objective function evaluations. In this
approach the number of exact function evaluations that will be
performed during the optimization is known in advance. Fixed
evolution control can be further divided into generation-based
control, where in some generations all solutions are approximated
and in the others they are exactly evaluated (Deb & Nain, 2007),
and individual based control, where in every generation some
(usually the best) solutions are exactly evaluated and others
approximated (Grierson & Pak, 1993).

In adaptive evolution control, the number of exactly evaluated
solutions is not known in advance, but depends on the accuracy
of the model for the given problem. Adaptive evolution control
can be used in one of two ways: as a part of a memetic search or
to pre-select the promising individuals which are then exactly
evaluated (Pilat & Neruda, 2012).

In a memetic algorithm, an additional algorithm (e.g., a gradi-
ent-based or an evolutionary algorithm) is used to find the optimal
solutions using the surrogate model. Once this optimum is found,
the best solutions are exactly evaluated and used for updating
the model. In Pilat and Neruda (2011), aggregated surrogate mod-
els are used in a memetic algorithm. The model is based on the dis-
tance to the currently known, nondominated set and is used to find
new, nondominated individuals using local search. In memetic
algorithms, especially if the surrogate model is not very accurate,
a local optimum is often found instead of the global optimum.

In the case of pre-selecting the promising individuals, the surro-
gate model is used to find the promising or drop the low-quality
individuals even before they are exactly evaluated, thus reducing
the number of exact evaluations. For example, OEGADO
(Chafekar, Shi, Rasheed, & Xuan, 2005) creates a surrogate model
for each of the objectives. The best solutions in every objective
get also approximated on other objectives, which helps with find-
ing trade-off individuals. The best individuals are then exactly
evaluated and used to update the models. ParEGO (Knowles,
2006) uses the weighted sum of the objective functions to perform
a local search. The weights are generated randomly for each itera-
tion. When a different model is used for each of the functions, the
conversion from the multiobjective problem to the single-objective
one has to be performed (or a multiobjective optimizer has to be
used on the models). Moreover, if there are more models, their
errors can add up, as well as the time needed to train the models.

Surrogate models are also used to rank and filter out offspring
according to Pareto-related indicators like the hypervolume
(Emmerich, Giannakoglou, & Naujoks, 2006), or a weighted sum of
the objectives (Taboada, Baheranwala, Coit, & Wattanapongsakorn,
2007). The problem with the methods that use hypervolume as a

2 M. Mlakar et al. / European Journal of Operational Research xxx (2014) xxx–xxx

Please cite this article in press as: Mlakar, M., et al. GP-DEMO: Differential Evolution for Multiobjective Optimization based on Gaussian Process models.
European Journal of Operational Research (2014), http://dx.doi.org/10.1016/j.ejor.2014.04.011

http://dx.doi.org/10.1016/j.ejor.2014.04.011


Download English Version:

https://daneshyari.com/en/article/6896766

Download Persian Version:

https://daneshyari.com/article/6896766

Daneshyari.com

https://daneshyari.com/en/article/6896766
https://daneshyari.com/article/6896766
https://daneshyari.com

